天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程博士論文 >

非球形顆粒的單分散和多分散無序阻塞填充研究

發(fā)布時間:2022-02-08 21:39
  填充系統(tǒng)定義為低維空間中不重疊凸體的集合。自然界中廣泛存在著跨尺度的填充系統(tǒng),例如描述液體結構的三維硬球系統(tǒng)、納米顆粒的自組裝結構、細胞組織結構、以及宏觀顆粒介質等。研究者們關注從離散顆粒尺度到整體填充系統(tǒng)的集合效應。其中,描述靜態(tài)填充結構的核心指標為填充率,其定義為顆?傮w積占填充空間體積之比;以及配位數(shù),其定義為每個顆粒與周圍顆粒的平均接觸數(shù)。無序阻塞填充(或隨機密填充)主要適用于宏觀非平衡態(tài)的無摩擦顆粒介質,對應于隨機生成的保持力學穩(wěn)定的最低填充率。三維無摩擦球體的無序阻塞填充率φJ≈0.64被大量實驗和數(shù)值模擬驗證。近年來,非球體顆粒的無序阻塞填充受到關注,然而缺乏系統(tǒng)性的綜合討論。并且,有關耦合的顆粒粒徑與形狀多分散填充的研究幾乎空白。本文以數(shù)值模擬的方法研究了非球體顆粒的單分散和多分散無序阻塞填充。本文考慮了具有廣泛代表性的顆粒模型,包括球柱、橢球、超橢球、以及球多面體。對于單分散無序阻塞填充,本文系統(tǒng)研究了φJ和配位數(shù)z與顆粒形狀間的關系。隨著顆粒非球度A增加(形狀偏離球體)φJ從~0.64呈先增加后減小的趨勢。相當一部分顆粒的無序阻塞填充是欠靜定的,即配位數(shù)z<z... 

【文章來源】:北京大學北京市211工程院校985工程院校教育部直屬院校

【文章頁數(shù)】:117 頁

【學位級別】:博士

【部分圖文】:

非球形顆粒的單分散和多分散無序阻塞填充研究


(a)球柱;(b)橢球;(c)球正四面體;(d)球立方體

柏拉圖,橢球,代表性,形狀


北京大學博士學位論文圖2.2代表性的超橢球形狀隨p和w的變化?梢曌髌涮乩161]。質心在原點的超橢球可定義為|x|2p+|yw1|2p+|zw2|2p=1(2.3)這里我們對超橢球的尺度做了歸一化,其中w1,w2為上文所述的兩個軸比(軸比的定義與上述橢球相同),p為控制超橢球形狀的參數(shù)。沒有軸比效應即w1=w2=w=1時,模型描述了超球顆粒[63]。p=1時超橢球退化為橢球,p逐漸減小至0.5形狀逼近八面體,而p增大至正無窮則形狀逼近長方體。圖2.2展示了代表性的超橢球形狀隨p和w的變化,其包含了球體(p=w=1)、超球、橢球、和其余超橢球。另外,區(qū)別于特殊情況下的單一軸比參數(shù)w,我們定義β=w1w2來衡量顆粒的整體軸比效應,β>1時形狀是長的,反之則為扁的。為了一般性描述非球(凸體)顆粒的形狀,我們定義球形度為[106]Ψ=(4π)1/3(3Vp)2/3Ap(2.4)其中Vp和Ap分別為顆粒的體積與表面積。0≤Ψ≤1,球體對應于Ψ=1。五種柏拉圖體的球形度分別為:正四面體Ψ=0.671,立方體Ψ=0.806,正八面體Ψ=0.846,正十二面體Ψ=0.910,和正二十面體Ψ=0.939。對本文考慮的三種球多面體,隨著球角度s的變化其Ψ可以連續(xù)從1演化至上述對應值。圖2.2右端接近立方體的超球(p=2)對應Ψ=0.956,接近1?紤]到球體附近顆粒形狀的擾動會急劇影響填充性質,我們定義非球度A=1Ψ。對于旋轉橢球和一類只有單軸效應(β=w)的超橢球(p=2),其軸比與A的關系如圖2.3所示。一般的具有雙軸效應的形狀的(A,β)基14

曲線,橢球,球度,軸比


第二章模型與方法圖2.3扁橢球(oblate)、長橢球(prolate)、p=2的超橢球(SEP)的整體軸比β與非球度A的關系。本(并不嚴格)處于長短橢球兩條曲線構成的區(qū)域內。A=0.3對應于長橢球w≈6和扁橢球w≈0.25,w和w1的對稱性僅在球附近即A較小時成立。本文考慮的非球形顆粒主要在A≤0.3這一區(qū)域。2.2顆粒的接觸判斷與相互作用本文主要采用數(shù)值方法生成各種顆粒系統(tǒng)的無序阻塞填充。這一過程的前提是確定顆粒間的兩體相互作用,其依賴于顆粒間的接觸本構關系。它們在不同的系統(tǒng)中可以表現(xiàn)為不同的形式,但都基于顆粒的幾何接觸判斷。具體來說,在硬顆粒系統(tǒng)中我們只需要判斷臨近顆粒接觸與否,而在(純推斥力)軟顆粒系統(tǒng)中則需要具體定義顆粒重疊與作用力的本構關系。軟顆粒間的作用力應定義為勢能的梯度,這一要求在本文中除內核相交的球多面體以外均得到滿足。另一方面,具有解析表達式的超橢球類顆粒的幾何接觸算法依賴數(shù)值迭代,而其余顆粒只需要不同復雜程度的浮點運算。接下來我們分別介紹不同顆粒的接觸判斷,下一節(jié)則提及如何在填充算法中具體利用這些相互作用。粗略地看,當顆粒幾何描述完全一致時,顆粒間作用力本構關系的不同定義方式對靜態(tài)填充性質影響不大。注意到組合球模型由于一定程度的表面凹陷可能會違背這一論斷。15


本文編號:3615798

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3615798.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶dff41***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com