TiO 2 Based Multishelled Hollow Spheres for Photocatalytic W
發(fā)布時(shí)間:2022-01-02 12:21
一直以來,能源與環(huán)境問題都是全球范圍內(nèi)的熱點(diǎn)問題。隨著化石能源的日益枯竭和與之帶來的環(huán)境污染等問題,開發(fā)廉價(jià)、來源廣泛的清潔能源變得尤為重要。太陽能作為一種來源廣泛,無污染的可再生能源受到人們廣泛的關(guān)注。目前,利用太陽能的主要方法之一就是將太陽能轉(zhuǎn)化為化學(xué)能。由于太陽能的能量密度非常低且不均勻,太陽能的有效利用變得尤為重要。在這項(xiàng)工作中,我們分析了太陽能水分解中的挑戰(zhàn)和問題,以及合成獨(dú)特的納米結(jié)構(gòu)材料并將其應(yīng)用于太陽能水分解。TiO2和Fe2O3能滿足太陽能水分解的幾個(gè)主要要求。常用的二氧化鈦的缺點(diǎn)是大帶隙(~3.2eV),僅能吸收占太陽能光譜4%的能量并且載流子少。Fe2O3吸收可見光,占太陽能光譜的46%,在水溶液中穩(wěn)定,無毒無害,成本低廉。然而,赤鐵礦的低電導(dǎo)率破壞了電荷產(chǎn)生、運(yùn)輸、收集和注入過程的連續(xù)性,導(dǎo)致由于快速電子-空穴復(fù)合而使得能量顯著損失。解決Fe2O3和TiO2內(nèi)在缺陷的一個(gè)潛在方法是開發(fā)異質(zhì)結(jié)夠Ti-Fe-O(Fe2TiO5)假鐵礦。為了揭示單純的Fe2TiO5是否能夠解決TiO2或Fe2O3的固有問題,有效驅(qū)動(dòng)四空穴化學(xué)反應(yīng),或者TiO2是必需的,以便在兩個(gè)體系...
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院過程工程研究所)北京市
【文章頁數(shù)】:109 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1. Introduction to Photocatalytic water Splitting and metal Oxides Hollow Spheres
1.1. Introduction to photocatalytic water splitting
1.1.1. Mechanism of Semiconductor Photocatalytic Water Splitting
1.1.2. Photocatalyst structural modification and nanostructuring
1.2. Introduction to Micro/Nano Inorganic Hollow Materials
1.2.1. Design and Synthesis Approach to Hollow Spheres
1.3. Layer by Layer assembly
1.3.1. Hydrothermal method
1.3.2. Hollow Spheres with mesoporous Shell (HSMS)
1.3.3. Precipitation polymerization
1.3.4. Core Shell Hollow structures
1.3.5. Soft Templating Approach
1.3.6. Template free method
1.4. Limitations of the synthesis methods
1.5.Carbonaceous microspheres as a hard template to produce multi-shelled hollow spheres
1.6.Applications of inorganic hollow particles
1.7. Aim of the work
2. Carbonaceous Microspheres derived from Sucrose
2.1. Introduction
2.2. Experimental Setup for the formation of Carbonaceous Microsphere
2.2.1. General recipe for the synthesis of the carbonaceous spheres
2.3. Hydrothermal carbonization of sucrose
2.4. Chemical properties of the carbonaceous spheres sample
2.4.1. IR and NMR spectra
2.5. The mechanism of the hydrothermal carbonization of polysaccharide
3. Fe_2TiO_5-TiO_2 Multi-Shelled Hollow Spheres
3.1 Introduction
3.2. Experimental
3.2.1. Experimental Section
3.2.2. Preparation of multi-shelled Fe_2TiO_5:TiO_2 hetero-structural hollow microspheres
3.3. XRD and Raman Analysis of as-synthesised wide range of hollow spheres morphologies
3.4. TEM and SEM Analysis analysis of as-synthesis Multi-Shelled Fe_2TiO_5-TiO_2 composite Hollow Spheres
3.5. Photocatalytic Charge Transfer Mechanism between Fe_2TiO_5 and TiO_2 composite hollow spheres
3.6. Conduction and valence band evaluation of Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
3.7. Barnet Nitrogen adsorption-desorption isotherm Fe_2TiO_5-TiO_2Multi-Shelled Hollow Spheres
3.8. XPS analysis Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
3.9. Ultraviolet-Visible, Photoluminescence and Performance evolution of as-synthesised Multi-shelled Hollow Spheres morphologies
3.10. Summary
4. Spatially Separated Fe_2TiO_5-TiO_2 Yolk Shell Hollow Spheres
4.1. Introduction
4.2. Experimental
4.2.1. Materials
4.2.2 Preparation of Fe_2Ti0_5:TiO_2 hetero-structural yolk shell hollow microspheres
4.3. Results and Discussion
4.4. Formation Mechanism of Fe_2TiO-5-TiO_2 Yolk Shell morphology
4.5. Conclusion
5. Versatility of Carbonaceous Microspheres
5.1. Introduction
5.2. Experimental
5.2.1. Materials
5.2.2. Synthesis of multi-shelled hollow microspheres
5.2.3. Synthesis of multi-shelled TiO_2 hollow spheres
5.2.4. Synthesis of multi-shelled Fe_2O_3 hollow spheres
5.2.5. Synthesis of multi-shelled Co_3_O_4 hollow spheres
5.2.6. Synthesis of multi-shelled NiO hollow spheres
5.2.7. Synthesis of Mn_2O_3 hollow spheres
5.2.8. Synthesis of multi-shelled Fe_2TiO_5-TiO_2-Ag_2O hollow spheres
5.3. Characterization of as-synthesised Multi-shelled hollow spheres
5.3.1. Morphology and structure
5.3.2. X-ray diffraction (XRD)
5.4. Mixed metal oxides hollow spheres
5.5. Conclusion
6. Summary
References
附件
Abbreviations
Resume and Publications
Acknowledgements
【參考文獻(xiàn)】:
期刊論文
[1]In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3[J]. Ai Bing Chen Wei Ping Zhang Yong Liu Xiu Wen Han Xin He Bao~* State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China. Chinese Chemical Letters. 2007(08)
[2]Rapid Fabrication of Hollow SiO2 Spheres with Novel Morphology[J]. Dong Jun WANG1,2, Qun LUO1, Dan Dan JIA2, Xiao Dong LI1, Xin Qiou WANG1, Yong Huang1, Zhen ZHEN1, Xin Hou LIU1,* 1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 2Hebei Vocation-technical Teacher?s College, Qinhuangdao 066600. Chinese Chemical Letters. 2003(12)
本文編號(hào):3564169
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院過程工程研究所)北京市
【文章頁數(shù)】:109 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1. Introduction to Photocatalytic water Splitting and metal Oxides Hollow Spheres
1.1. Introduction to photocatalytic water splitting
1.1.1. Mechanism of Semiconductor Photocatalytic Water Splitting
1.1.2. Photocatalyst structural modification and nanostructuring
1.2. Introduction to Micro/Nano Inorganic Hollow Materials
1.2.1. Design and Synthesis Approach to Hollow Spheres
1.3. Layer by Layer assembly
1.3.1. Hydrothermal method
1.3.2. Hollow Spheres with mesoporous Shell (HSMS)
1.3.3. Precipitation polymerization
1.3.4. Core Shell Hollow structures
1.3.5. Soft Templating Approach
1.3.6. Template free method
1.4. Limitations of the synthesis methods
1.5.Carbonaceous microspheres as a hard template to produce multi-shelled hollow spheres
1.6.Applications of inorganic hollow particles
1.7. Aim of the work
2. Carbonaceous Microspheres derived from Sucrose
2.1. Introduction
2.2. Experimental Setup for the formation of Carbonaceous Microsphere
2.2.1. General recipe for the synthesis of the carbonaceous spheres
2.3. Hydrothermal carbonization of sucrose
2.4. Chemical properties of the carbonaceous spheres sample
2.4.1. IR and NMR spectra
2.5. The mechanism of the hydrothermal carbonization of polysaccharide
3. Fe_2TiO_5-TiO_2 Multi-Shelled Hollow Spheres
3.1 Introduction
3.2. Experimental
3.2.1. Experimental Section
3.2.2. Preparation of multi-shelled Fe_2TiO_5:TiO_2 hetero-structural hollow microspheres
3.3. XRD and Raman Analysis of as-synthesised wide range of hollow spheres morphologies
3.4. TEM and SEM Analysis analysis of as-synthesis Multi-Shelled Fe_2TiO_5-TiO_2 composite Hollow Spheres
3.5. Photocatalytic Charge Transfer Mechanism between Fe_2TiO_5 and TiO_2 composite hollow spheres
3.6. Conduction and valence band evaluation of Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
3.7. Barnet Nitrogen adsorption-desorption isotherm Fe_2TiO_5-TiO_2Multi-Shelled Hollow Spheres
3.8. XPS analysis Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
3.9. Ultraviolet-Visible, Photoluminescence and Performance evolution of as-synthesised Multi-shelled Hollow Spheres morphologies
3.10. Summary
4. Spatially Separated Fe_2TiO_5-TiO_2 Yolk Shell Hollow Spheres
4.1. Introduction
4.2. Experimental
4.2.1. Materials
4.2.2 Preparation of Fe_2Ti0_5:TiO_2 hetero-structural yolk shell hollow microspheres
4.3. Results and Discussion
4.4. Formation Mechanism of Fe_2TiO-5-TiO_2 Yolk Shell morphology
4.5. Conclusion
5. Versatility of Carbonaceous Microspheres
5.1. Introduction
5.2. Experimental
5.2.1. Materials
5.2.2. Synthesis of multi-shelled hollow microspheres
5.2.3. Synthesis of multi-shelled TiO_2 hollow spheres
5.2.4. Synthesis of multi-shelled Fe_2O_3 hollow spheres
5.2.5. Synthesis of multi-shelled Co_3_O_4 hollow spheres
5.2.6. Synthesis of multi-shelled NiO hollow spheres
5.2.7. Synthesis of Mn_2O_3 hollow spheres
5.2.8. Synthesis of multi-shelled Fe_2TiO_5-TiO_2-Ag_2O hollow spheres
5.3. Characterization of as-synthesised Multi-shelled hollow spheres
5.3.1. Morphology and structure
5.3.2. X-ray diffraction (XRD)
5.4. Mixed metal oxides hollow spheres
5.5. Conclusion
6. Summary
References
附件
Abbreviations
Resume and Publications
Acknowledgements
【參考文獻(xiàn)】:
期刊論文
[1]In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3[J]. Ai Bing Chen Wei Ping Zhang Yong Liu Xiu Wen Han Xin He Bao~* State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China. Chinese Chemical Letters. 2007(08)
[2]Rapid Fabrication of Hollow SiO2 Spheres with Novel Morphology[J]. Dong Jun WANG1,2, Qun LUO1, Dan Dan JIA2, Xiao Dong LI1, Xin Qiou WANG1, Yong Huang1, Zhen ZHEN1, Xin Hou LIU1,* 1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 2Hebei Vocation-technical Teacher?s College, Qinhuangdao 066600. Chinese Chemical Letters. 2003(12)
本文編號(hào):3564169
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3564169.html
最近更新
教材專著