天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

玉米秸稈力學(xué)特性的離散元建模方法研究

發(fā)布時(shí)間:2019-06-12 20:27
【摘要】:玉米秸稈作為一種重要的生物質(zhì)資源,在資源日益匱乏的經(jīng)濟(jì)時(shí)代,逐漸被大家所重視。由于玉米秸稈具有復(fù)雜多樣的內(nèi)部結(jié)構(gòu),導(dǎo)致其具有獨(dú)特的個(gè)體差異,從而呈現(xiàn)出不同的力學(xué)性能,直接影響它的利用。深入研究玉米秸稈各組分的力學(xué)性能及其差異,并建立相應(yīng)的力學(xué)模型,探討外載荷作用下的力學(xué)特性變化規(guī)律,為其深度綜合利用和預(yù)處理加工機(jī)械設(shè)計(jì)提供基礎(chǔ)的理論依據(jù)。針對(duì)玉米秸稈的力學(xué)特性理論分析和數(shù)學(xué)建模這一較為困難的問(wèn)題,在對(duì)玉米秸稈的生物物理力學(xué)特性進(jìn)行研究的基礎(chǔ)上,利用離散元方法建立玉米秸稈離散元力學(xué)模型,包括:玉米秸稈外皮、內(nèi)穰的剪切和拉伸力學(xué)特性離散元模型;單根玉米秸稈的徑向壓縮、彎曲力學(xué)特性離散元模型和玉米秸稈集合體的打捆力學(xué)特性離散元模型等。論文圍繞玉米秸稈離散元模型的建立,對(duì)玉米秸稈物理和力學(xué)特性進(jìn)行了研究,取得的主要研究成果如下:(1)測(cè)試了玉米秸稈基本物料特性參數(shù),得到:玉米莖稈的平均直徑為16.14±4.05mm,平均外皮厚度為0.9mm,外皮、內(nèi)穰和整體的平均密度分別為1.12、0.66和1g/cm3,同時(shí)用圖像處理的方法得到玉米秸稈維管束的橫截面直徑為0.15mm,用烘干法測(cè)得新鮮玉米秸稈含水率為80%,風(fēng)干玉米秸稈的含水率為8%。(2)建立了玉米秸稈外皮軸向剪切力學(xué)特性的離散元模型,同時(shí)進(jìn)行了剪切測(cè)試與模擬對(duì)比。剪切測(cè)試結(jié)果表明:外皮平均剪切強(qiáng)度為3.00MPa,平均彈性模量為0.23GPa;外皮軸向剪切強(qiáng)度和彈性模量隨節(jié)間位置升高而降低;含水率和品種對(duì)剪切強(qiáng)度和彈性模量均無(wú)影響。模擬結(jié)果表明:對(duì)玉米秸稈外皮軸向剪切模型加載后模擬的力學(xué)特性與實(shí)際測(cè)試力學(xué)特性相似;模擬的破壞過(guò)程中的載荷—位移圖線與測(cè)試實(shí)測(cè)曲線相一致;獲得了外皮維管束間的離散元模型參數(shù),主要參數(shù)s-bond和kn的取值范圍分別為0.14-0.32 N和1×106-1.2×107N·m-1。(3)建立了玉米秸稈外皮和內(nèi)穰進(jìn)行拉伸力學(xué)特性的離散元模型,同時(shí)進(jìn)行了拉伸測(cè)試與拉伸模型模擬對(duì)比。拉伸測(cè)試結(jié)果表明:秸稈外皮拉伸具有塑性材料的特征,在新鮮狀態(tài)下,抗拉強(qiáng)度為131.1?48MPa,彈性模量為22.93?13GPa;風(fēng)干狀態(tài)下,抗拉強(qiáng)度為113.42?40MPa,彈性模量為15.71?6GPa;玉米秸稈內(nèi)穰拉伸具有脆性材料的特征,在新鮮狀態(tài)下,抗拉強(qiáng)度為1.09?0.27MPa,彈性模量為0.06?0.02GPa;在風(fēng)干狀態(tài)下,抗拉強(qiáng)度為0.86?0.67MPa,彈性模量為0.12?0.07GPa;玉米秸稈的拉伸強(qiáng)度和彈性模量隨節(jié)間位置升高而降低,隨含水率的增加而增加,拉伸強(qiáng)度受到品種的一定影響,拉伸彈性模量卻不受品種影響。秸稈內(nèi)穰的拉伸強(qiáng)度,新鮮秸稈大于風(fēng)干秸稈;而對(duì)于拉伸彈性模量,則為風(fēng)干秸稈大于新鮮秸稈;節(jié)間位置和品種對(duì)內(nèi)穰的拉伸強(qiáng)度和彈性模量無(wú)顯著影響。離散元模型模擬結(jié)果表明:玉米秸稈外皮和內(nèi)穰組織的離散元模型軸向拉伸力學(xué)特性曲線,以及破壞現(xiàn)象,均與測(cè)試特性相似;并分別獲得外皮軸向模型主要力學(xué)性能參數(shù)bondstrength為85.64-131.11 Pa·m-1(新鮮秸稈)和80.53-113.42 Pa·m-1(風(fēng)干秸稈),pb-kn為4.58×1013-1.05×1014 Pa·m-1(新鮮)和3.79×1013-6.97×1013 Pa·m-1(風(fēng)干),以及內(nèi)穰離散元模型的離散元參數(shù)kn為0.5×106-1.5×106 N·m-1(風(fēng)干)和1.6×106-3×106 N·m-1(新鮮),ks為1.0×106 N·m-1,n-bond為5-30 N(風(fēng)干)和35-50N(新鮮),s-bond為10-20N(風(fēng)干)和40-50N(新鮮)。(4)建立了單根玉米秸稈的徑向壓縮力學(xué)特性離散元模型,同時(shí)進(jìn)行了徑向壓縮測(cè)試與模擬結(jié)果的對(duì)比。模型的模擬結(jié)果表明:得出得到虛擬的載荷-位移曲線主要包括彈性階段、破壞階段和強(qiáng)化階段,并分析了虛擬的壓縮破壞現(xiàn)象和壓縮過(guò)程中的微觀力學(xué)響應(yīng);將測(cè)試結(jié)果與模擬結(jié)果對(duì)比分析,認(rèn)為模型合理,與實(shí)際材料吻合,并通過(guò)模型分析出玉米秸稈受壓狀態(tài)時(shí)內(nèi)部結(jié)合機(jī)理。(5)建立了單根玉米秸稈的彎曲力學(xué)特性離散元模型,同時(shí)進(jìn)行了彎曲測(cè)試與模擬結(jié)果對(duì)比。模擬結(jié)果表明:彎曲力學(xué)特性曲線主要包括彈性階段和粘彈性階段,并分析了虛擬的彎曲破壞現(xiàn)象和壓縮過(guò)程中的微觀力學(xué)響應(yīng);將測(cè)試結(jié)果與模擬結(jié)果對(duì)比分析,認(rèn)為模型合理,與實(shí)際材料吻合,并通過(guò)模型分析出玉米秸稈彎曲破壞時(shí)內(nèi)部結(jié)合機(jī)理。(6)建立了多根玉米秸稈的打捆力學(xué)特性離散元模型,并進(jìn)行虛擬打捆模擬與測(cè)試結(jié)果對(duì)比。打捆測(cè)試得到:捆扎密度與打捆松緊度的關(guān)系為二次曲線關(guān)系;秸稈打捆的繩索張力與捆扎直徑的關(guān)系為指數(shù)函數(shù)關(guān)系。虛擬打捆模擬得到:虛擬打捆力學(xué)性能曲線與測(cè)試曲線相似;虛擬打捆模擬的載荷與圓捆半徑呈現(xiàn)指數(shù)函數(shù)關(guān)系。測(cè)試結(jié)果與模型模擬趨勢(shì)相同,表明離散元模型可用于玉米秸稈加工利用機(jī)械設(shè)計(jì)中的物料力學(xué)特性模擬。
[Abstract]:As an important biomass resource, the corn straw is gradually being paid attention to by the economic times of the increasingly scarce resources. Because the corn straw has a complex and diverse internal structure, it has unique individual difference, thus presenting different mechanical properties and directly affecting the utilization of the corn straw. In this paper, the mechanical properties and the difference of each component of the corn stalk are studied deeply, and a corresponding mechanical model is established to study the change rule of the mechanical property under the action of the external load, which provides a theoretical basis for the comprehensive utilization of the maize straw and the mechanical design of the pre-treatment process. Based on the research of the physical and mechanical properties of the corn straw, the discrete element method of the maize straw is established by means of the discrete element method, which includes the following steps: A discrete element model of shear and tensile mechanical properties of a single corn straw, a discrete element model of the radial compression of a single corn straw, a discrete element model of a bending mechanical property and a bundling mechanical characteristic discrete element model of the corn straw aggregate, and the like. The paper studies the physical and mechanical properties of the maize straw, and the main research results are as follows: (1) The basic material property parameters of the corn straw are tested, and the average diameter of the corn stalk is 16.14-4.05mm. The average density of the outer skin is 0.9mm, the average density of the outer skin, the inner layer and the whole is 1.12, 0.66 and 1 g/ cm3 respectively, and the cross section diameter of the corn straw vascular bundle is 0.15 mm by the method of image processing, and the water content of the fresh corn straw is 80% by the drying method, and the moisture content of the air-dried corn straw is 8%. (2) The discrete element model of the axial shearing and mechanical properties of the corn straw outer skin is established, and the shear test and the simulation comparison are also carried out. The results of the shear test show that the average shear strength of the skin is 3.00 MPa, the average elastic modulus is 0.23 GPa, the axial shear strength and the elastic modulus of the outer skin decrease with the increase of the position of the internode, and the water content and the variety have no effect on the shear strength and the elastic modulus. The simulation results show that the mechanical characteristics of the simulation after loading the axial shear model of the corn straw outer skin are similar to that of the actual test mechanics, and the load displacement curve in the simulation is in line with the measured curve of the test, and the discrete element model parameters between the outer sheath and the pipe bundle are obtained. The values of s-bond and kn are 0.14-0.32 N and 1-106-1.2-107 N 路 m-1, respectively. (3) The discrete element model of the tensile and mechanical properties of the outer skin and the inner surface of the maize straw was established, and the comparison of the tensile test with the tensile model was also carried out. The tensile test results show that the tensile strength is 131.1-48MPa, the elastic modulus is 22.93-13GPa in the fresh state, the tensile strength is 113.42-40MPa, the elastic modulus is 15.71-6GPa, and the tensile strength of the corn straw is characterized by the brittle material. in the fresh state, the tensile strength is 1.09-0.27MPa and the elastic modulus is 0.06-0.02GPa; in the air-drying state, the tensile strength is 0.86-0.67MPa, the elastic modulus is 0.12-0.07 GPa, the tensile strength and the elastic modulus of the corn straw are reduced along with the increase of the position of the internode, and the elastic modulus is increased with the increase of the water content, The tensile strength is affected by the variety, and the tensile elastic modulus is not affected by the variety. The tensile strength of the straw in the straw is higher than that of the air-dried straw, and for the tensile elastic modulus, the air-dried straw is larger than the fresh straw, and the internode position and the variety have no significant influence on the tensile strength and the elastic modulus of the inner layer. The simulation results of the discrete element model show that the mechanical characteristic curve of the axial tensile and mechanical properties of the discrete element model of the corn straw outer skin and the inner-shell tissue are similar to those of the test characteristics. And the main mechanical property parameters of the outer skin axial model are 85.64-131.11 Pa 路 m-1 (fresh straw) and 80.53-113.42 Pa 路 m-1 (air-dried straw), and the pb-kn is 4.58-1013-1.05-1014 Pa 路 m-1 (fresh) and 3.79-131013-6.97-1013 Pa 路 m-1 (air-dried). And the discrete element parameter kn of the internal discrete element model is 0.5-106-1.5-106N 路 m-1 (air-dried) and 1.6-106-3-106N 路 m-1 (fresh), ks is 1.0-106N 路 m-1, n-bond is 5-30N (air-dried) and 35-50N (fresh), s-bond is 10-20N (air-dried) and 40-50N (fresh). (4) The discrete element model of the radial compression and mechanical properties of a single corn straw is established, and the comparison of the radial compression test with the simulation results is carried out. The simulation results of the model show that the virtual load-displacement curve mainly includes the elastic phase, the failure stage and the strengthening phase, and the virtual compression failure phenomenon and the micro-mechanical response in the compression process are analyzed, and the test results are compared with the simulation results. It is considered that the model is reasonable and is in good agreement with the actual material, and the internal binding mechanism of the corn straw under pressure is analyzed through the model. (5) A discrete element model of the bending and mechanical properties of a single corn straw is established, and the comparison of the bending test with the simulation results is carried out. The simulation results show that the curve of bending mechanics mainly includes the elastic phase and the viscoelastic phase, and the virtual bending failure and the micro-mechanical response in the compression process are analyzed. The results of the test and the simulation results are compared and analyzed, and the model is considered to be reasonable and consistent with the actual material. And the internal binding mechanism of the corn straw bending and destruction is analyzed through the model. And (6) establishing a discrete element model of a bundling mechanical property of a plurality of corn straws, and comparing the virtual bundling simulation with the test result. The relationship between the binding density and the bundling diameter is the quadratic curve, and the relationship between the rope tension and the binding diameter of the straw bundle is an exponential function. The virtual bundling simulation results in that the virtual bundling mechanical property curve is similar to the test curve, and the load of the virtual bundling simulation is in exponential function relation with the radius of the round bundle. The result of the test is the same as that of the model, which indicates that the discrete element model can be used to simulate the mechanical properties of the material in the mechanical design of the corn straw processing.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ914.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄒中華;玉米及玉米油綜述[J];糧食加工;1987年02期

2 鄭國(guó)民;劉曉林;;談?wù)勔杂衩诪檩o料釀制優(yōu)質(zhì)啤酒的幾點(diǎn)體會(huì)[J];釀酒;1989年06期

3 秀英;玉米片的制備工藝[J];糧油食品科技;1991年02期

4 高影,蘭盛斌,張華昌,王雙林,李寶榮;吉林省玉米入庫(kù)后損耗的研究[J];糧油倉(cāng)儲(chǔ)科技通訊;2001年03期

5 周雅芳,付金龍,汪潤(rùn)生;無(wú)公害玉米生產(chǎn)關(guān)鍵性技術(shù)[J];農(nóng)業(yè)環(huán)境與發(fā)展;2005年01期

6 ;美國(guó)培育出稈和葉都可制取乙醇的玉米新品種[J];農(nóng)業(yè)工程技術(shù)(農(nóng)產(chǎn)品加工);2007年05期

7 郭靚;黎云祥;楊小寧;但德忠;;微量重金屬元素對(duì)玉米生長(zhǎng)影響的研究進(jìn)展[J];資源開發(fā)與市場(chǎng);2008年07期

8 曾潔;李新華;孫俊良;李光磊;鄭煜焱;;不同玉米品種擠壓膨化特性及工藝優(yōu)化[J];中國(guó)糧油學(xué)報(bào);2008年05期

9 張來(lái)林;朱彥;張愛(ài)強(qiáng);朱慶芳;;玉米破碎的原因與解決措施[J];糧油食品科技;2009年01期

10 鄧會(huì)超;董梅;苑昕;鄭剛;高樹成;王德華;劉長(zhǎng)生;曹贊;陳百會(huì);;玉米產(chǎn)后流通中減損降耗應(yīng)關(guān)注的主要環(huán)節(jié)[J];糧食流通技術(shù);2009年01期

相關(guān)會(huì)議論文 前10條

1 宋鵬飛;王甜甜;毛培;羅梅浩;;不同玉米品種丁布含量及其與抗螟性的關(guān)系[A];華中昆蟲研究(第八卷)[C];2012年

2 劉祖蔭;;發(fā)展玉米的加工利用技術(shù)提高玉米的綜合經(jīng)濟(jì)效益[A];食品論文匯編[C];1985年

3 王春虎;陳士林;董娜;蔣愛(ài)鳳;;豫北平原不同施氮量對(duì)玉米產(chǎn)量和品質(zhì)的影響研究[A];中國(guó)農(nóng)作制度研究進(jìn)展2008[C];2008年

4 王宇翔;;玉米后期倒伏的易損性分析[A];天氣、氣候與可持續(xù)發(fā)展——河南省氣象學(xué)會(huì)2010年年會(huì)論文集[C];2010年

5 唐紅艷;;玉米品種精細(xì)化布局氣象服務(wù)技術(shù)[A];第28屆中國(guó)氣象學(xué)會(huì)年會(huì)——S11氣象與現(xiàn)代農(nóng)業(yè)[C];2011年

6 劉治先;;我國(guó)優(yōu)質(zhì)專用玉米的發(fā)展策略[A];2003年全國(guó)作物遺傳育種學(xué)術(shù)研討會(huì)論文集[C];2003年

7 劉治先;;優(yōu)質(zhì)專用玉米的發(fā)展策略[A];’2003中國(guó)作物學(xué)會(huì)學(xué)術(shù)年會(huì)文集[C];2003年

8 孫世賢;;種植業(yè)結(jié)構(gòu)調(diào)整中的玉米生產(chǎn)問(wèn)題[A];全面建設(shè)小康社會(huì)——中國(guó)科協(xié)二○○三年學(xué)術(shù)年會(huì)農(nóng)林水論文精選[C];2003年

9 劉翔;許志剛;;玉米品種對(duì)玉米細(xì)菌性枯萎病的抗性研究[A];外來(lái)有害生物檢疫及防除技術(shù)學(xué)術(shù)研討會(huì)論文匯編[C];2005年

10 李魯華;柳延濤;呂新;朱江;;綠洲玉米生態(tài)適應(yīng)性的研究[A];中國(guó)科協(xié)2005年學(xué)術(shù)年會(huì)“新疆現(xiàn)代農(nóng)業(yè)論壇”論文專集[C];2005年

相關(guān)重要報(bào)紙文章 前10條

1 吉林食品行業(yè)管理辦公室調(diào)研組;吉林玉米大省做大玉米文章[N];中國(guó)鄉(xiāng)鎮(zhèn)企業(yè)報(bào);2001年

2 記者 孔非;中國(guó)國(guó)際玉米產(chǎn)業(yè)博覽會(huì)九月在長(zhǎng)舉行[N];長(zhǎng)春日?qǐng)?bào);2007年

3 本報(bào)記者  秦洪湖  通訊員  趙中文  肖 松;為了金色玉米香飄世界[N];中國(guó)國(guó)門時(shí)報(bào);2006年

4 本報(bào)記者 石巖;玉米品種多 購(gòu)買早籌劃[N];河南科技報(bào);2006年

5 楊婷;國(guó)家3億補(bǔ)貼玉米良種玉米價(jià)格將上揚(yáng)[N];中國(guó)經(jīng)濟(jì)時(shí)報(bào);2007年

6 孟寶林;玉米行情看好 今年莊稼咋種[N];牡丹江日?qǐng)?bào);2006年

7 吳守祥;玉米行情火爆的背后[N];期貨日?qǐng)?bào);2006年

8 吉林糧食集團(tuán)副總經(jīng)理 姜建華;玉米價(jià)格穩(wěn)中走高[N];期貨日?qǐng)?bào);2006年

9 李茜;玉米投資正當(dāng)紅[N];上海金融報(bào);2008年

10 才春林;筍玉米因?qū)S枚碣F[N];農(nóng)民日?qǐng)?bào);2003年

相關(guān)博士學(xué)位論文 前10條

1 石紅良;我國(guó)不同年代玉米品種及其親本自交系產(chǎn)量和氮效率的變化趨勢(shì)[D];中國(guó)農(nóng)業(yè)科學(xué)院;2014年

2 張紅偉;玉米耐低磷的種質(zhì)資源評(píng)價(jià)及耐低磷的遺傳基礎(chǔ)研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2014年

3 劉永花;不同熟期玉米品種積溫需求定量研究[D];山西農(nóng)業(yè)大學(xué);2014年

4 岳輝;玉米自交系低磷耐性遺傳分析[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2015年

5 李春輝;玉米高密度重組圖譜構(gòu)建及耐旱相關(guān)性狀的遺傳解析[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年

6 高慶華;玉米低植酸基因的初步定位和轉(zhuǎn)育應(yīng)用研究[D];河北農(nóng)業(yè)大學(xué);2013年

7 李圣彥;玉米萜類合成酶基因TPS10表達(dá)調(diào)控的研究[D];中國(guó)農(nóng)業(yè)大學(xué);2015年

8 翟立超;玉米品種競(jìng)爭(zhēng)能力的評(píng)價(jià)與分析[D];中國(guó)農(nóng)業(yè)大學(xué);2015年

9 曹國(guó)鑫;小農(nóng)戶糧食作物高產(chǎn)高效技術(shù)應(yīng)用限制因素及對(duì)策研究[D];中國(guó)農(nóng)業(yè)大學(xué);2015年

10 毛欣;玉米芽種缽盤精量播種機(jī)理與裝置參數(shù)研究[D];黑龍江八一農(nóng)墾大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 李曉瑞;黃芪綠肥的品質(zhì)評(píng)價(jià)及效應(yīng)分析[D];山西農(nóng)業(yè)大學(xué);2015年

2 江帆;復(fù)合Bt cry1Ac和cry1Ie抗蟲玉米抗螟性及其在IRM中的作用[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年

3 李秀秀;玉米耐低氮雜種優(yōu)勢(shì)分析[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年

4 高杰;不同玉米品種的適應(yīng)性分析[D];西北農(nóng)林科技大學(xué);2015年

5 劉歡;陜西及山西不同地區(qū)玉米營(yíng)養(yǎng)價(jià)值檢測(cè)與霉菌毒素污染情況分析[D];西北農(nóng)林科技大學(xué);2015年

6 李瑞敏;高地隙玉米噴霧機(jī)施藥裝置的設(shè)計(jì)研究[D];石河子大學(xué);2015年

7 白翠瑩;玉米ZmPROPep1基因轉(zhuǎn)化及轉(zhuǎn)基因抗病聚合育種[D];華中農(nóng)業(yè)大學(xué);2015年

8 吳文麗;施用三種肥料對(duì)不同復(fù)墾年限土壤Hedley磷形態(tài)及玉米產(chǎn)量的影響[D];山西農(nóng)業(yè)大學(xué);2015年

9 葉慧香;轉(zhuǎn)cry1Ie基因抗蟲玉米對(duì)土壤微生物群落結(jié)構(gòu)和土壤肥力的影響研究[D];華中農(nóng)業(yè)大學(xué);2015年

10 殷鵬程;玉米株高和穗位高的QTL定位[D];華中農(nóng)業(yè)大學(xué);2015年

,

本文編號(hào):2498279

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2498279.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶804ff***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
色婷婷丁香激情五月天| 日本加勒比在线播放一区| av在线免费播放一区二区| 99香蕉精品视频国产版| 欧美日韩中国性生活视频| 91精品国产综合久久不卡| 欧美自拍偷自拍亚洲精品| 中文字幕精品一区二区三| 情一色一区二区三区四| 精品al亚洲麻豆一区| 亚洲品质一区二区三区| 亚洲欧美日韩网友自拍| 国产亚洲精品俞拍视频福利区 | 日韩性生活视频免费在线观看| 男女激情视频在线免费观看| 欧美有码黄片免费在线视频| 国产欧美高清精品一区| 九九热精彩视频在线播放| 国产精品流白浆无遮挡| 不卡中文字幕在线视频| 大尺度激情福利视频在线观看| 在线视频免费看你懂的| 一区二区日本一区二区欧美| 国产性色精品福利在线观看| 日本妇女高清一区二区三区| 日韩午夜老司机免费视频| 日韩人妻中文字幕精品| 婷婷激情四射在线观看视频| 麻豆精品视频一二三区| 欧美日韩精品综合在线| 欧美日韩欧美国产另类| 欧美一区二区日韩一区二区| 久久成人国产欧美精品一区二区| 老司机精品在线你懂的| 日韩不卡一区二区在线| 手机在线观看亚洲中文字幕| 国产精品免费视频久久| 风韵人妻丰满熟妇老熟女av| 好吊妞在线免费观看视频| 正在播放国产又粗又长| 久久精品伊人一区二区|