天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

固體火箭發(fā)動(dòng)機(jī)羽焰真溫測(cè)量技術(shù)研究

發(fā)布時(shí)間:2018-12-29 11:53
【摘要】:固體火箭發(fā)動(dòng)機(jī)的羽焰屬于一種特殊火焰,呈現(xiàn)高溫、高速和氣固兩相非平衡流的動(dòng)態(tài)特征。羽焰溫度是研究推進(jìn)劑的燃燒過(guò)程、了解發(fā)動(dòng)機(jī)的性能和優(yōu)化發(fā)動(dòng)機(jī)的特性的重要參數(shù)。羽焰流場(chǎng)非常復(fù)雜,固體火箭發(fā)動(dòng)機(jī)地面試車時(shí)的測(cè)量環(huán)境十分惡劣,因此測(cè)量難度大。隨著能源、國(guó)防以及宇航事業(yè)的發(fā)展,固體火箭發(fā)動(dòng)機(jī)羽焰溫度的測(cè)量越來(lái)越受重視。固體火箭羽焰真溫測(cè)量技術(shù)的研究具有重要的科學(xué)價(jià)值與現(xiàn)實(shí)意義。多波長(zhǎng)測(cè)溫法是一種非接觸法,其原理為在某一時(shí)刻對(duì)被測(cè)目標(biāo)的多個(gè)波長(zhǎng)下的亮度溫度進(jìn)行同時(shí)測(cè)量,進(jìn)而求解目標(biāo)真溫。該方法對(duì)被測(cè)目標(biāo)沒(méi)有特殊要求,特別適合于高溫、甚高溫目標(biāo)的真溫測(cè)量。本文采用多波長(zhǎng)測(cè)溫法對(duì)固體火箭羽焰真溫進(jìn)行測(cè)量,旨在:探索發(fā)射率樣本選擇的理論依據(jù),在此基礎(chǔ)上研究真溫構(gòu)建的新方法;研制用于固體火箭羽焰真溫測(cè)量的寬量程光纖式多波長(zhǎng)高溫計(jì),解決現(xiàn)有多波長(zhǎng)高溫計(jì)無(wú)法獲得1173K以下羽焰真溫的問(wèn)題;研究一種新的有效波長(zhǎng)標(biāo)定方法,解決傳統(tǒng)標(biāo)定方法因信號(hào)太弱而無(wú)法用于光纖式多波長(zhǎng)高溫計(jì)有效波長(zhǎng)標(biāo)定的問(wèn)題;谝陨夏康,本文開(kāi)展了固體火箭發(fā)動(dòng)機(jī)羽焰真溫測(cè)量技術(shù)的研究工作。本文的主要研究?jī)?nèi)容如下:(1)針對(duì)傳統(tǒng)多波長(zhǎng)真溫求解方法中發(fā)射率樣本選擇缺少理論依據(jù)的問(wèn)題,提出了一種基于模型約束的多波長(zhǎng)真溫構(gòu)建方法。概述了傳統(tǒng)多波長(zhǎng)真溫求解方法,分析了傳統(tǒng)方法存在的主要問(wèn)題。在亮度溫度模型的基礎(chǔ)上,通過(guò)理論推導(dǎo)發(fā)現(xiàn)了亮度溫度變化和發(fā)射率變化之間的內(nèi)在關(guān)系,提出了具有普適性的發(fā)射率模型約束條件;谠摷s束條件,建立了帶約束的多模型真溫構(gòu)建方法。仿真結(jié)果表明,相比二次測(cè)量法,該方法的計(jì)算速度最大可提升81.3%。該發(fā)射率模型約束條件可以有效篩選發(fā)射率樣本,為發(fā)射率樣本的選擇提供了理論基礎(chǔ)。(2)為解決在1173K以下采用單一黑體輻射源不能實(shí)現(xiàn)現(xiàn)有高溫計(jì)的寬量程標(biāo)定而無(wú)法測(cè)量羽焰真溫的問(wèn)題,研制了一種用于固體火箭羽焰真溫測(cè)量的寬量程光纖式多波長(zhǎng)高溫計(jì)。分析了固體火箭羽焰的輻射特性和羽焰測(cè)溫的實(shí)際需求,設(shè)計(jì)了高溫計(jì)的光學(xué)系統(tǒng)、電路系統(tǒng)和應(yīng)用程序。光學(xué)系統(tǒng)采用分離結(jié)構(gòu)和光纖遠(yuǎn)傳技術(shù),提高了高溫計(jì)的瞄準(zhǔn)性能和工作可靠性。電路系統(tǒng)采用并聯(lián)光電探測(cè)器陣列相鄰像元的方法和前置放大電路自動(dòng)切換量程的方法,并針對(duì)900K~1173K溫區(qū)的溫度標(biāo)定提出了基于對(duì)數(shù)函數(shù)的標(biāo)定新方法,使高溫計(jì)的測(cè)溫下限達(dá)到了900K,將高溫計(jì)的溫度測(cè)量范圍拓寬至900K~2700K。(3)針對(duì)傳統(tǒng)有效波長(zhǎng)標(biāo)定方法標(biāo)定光纖式多波長(zhǎng)高溫計(jì)存在的實(shí)際問(wèn)題,提出了一種基于溫度標(biāo)定的有效波長(zhǎng)標(biāo)定新方法。分析了高溫計(jì)的傳統(tǒng)有效波長(zhǎng)標(biāo)定方法。結(jié)合實(shí)際溫度標(biāo)定數(shù)據(jù),研究了高溫計(jì)溫度標(biāo)定數(shù)據(jù)的內(nèi)在規(guī)律;谄绽士硕,建立了不同標(biāo)定溫度點(diǎn)標(biāo)定數(shù)據(jù)與有效波長(zhǎng)之間的關(guān)系模型,提出了由溫度標(biāo)定數(shù)據(jù)直接確定有效波長(zhǎng)的求解方法。該方法不僅提供了一種快速獲取有效波長(zhǎng)的新思路,而且避免了復(fù)雜耗時(shí)的標(biāo)定過(guò)程。分別采用仿真和實(shí)驗(yàn)對(duì)該方法進(jìn)行了驗(yàn)證。仿真結(jié)果顯示,溫度標(biāo)定值加入±1%的隨機(jī)誤差后,新方法得到的波長(zhǎng)值與理論值之間的相對(duì)誤差小于4.7%,此時(shí)所得真溫的計(jì)算值與理論值之間的相對(duì)誤差的最大絕對(duì)值為0.7%。實(shí)驗(yàn)結(jié)果表明,相比傳統(tǒng)標(biāo)定方法,新方法所得波長(zhǎng)值的相對(duì)誤差的最大絕對(duì)值為1.9%,此時(shí)所得真溫值的絕對(duì)誤差的最大值為2.4K,表明該方法可行。(4)對(duì)高溫計(jì)的實(shí)驗(yàn)結(jié)果和不確定度進(jìn)行了分析。采用本文所研制的高溫計(jì)在實(shí)驗(yàn)室進(jìn)行了鹵鎢燈燈絲溫度和黑體輻射源溫度的測(cè)量實(shí)驗(yàn),結(jié)果表明了高溫計(jì)的正確性與合理性。測(cè)量了某固體火箭發(fā)動(dòng)機(jī)地面試車時(shí)的羽焰真溫變化全過(guò)程,并對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了分析。利用該實(shí)驗(yàn)數(shù)據(jù),進(jìn)一步驗(yàn)證了基于模型約束的多波長(zhǎng)真溫構(gòu)建方法的有效性。分析了該高溫計(jì)的測(cè)量不確定度,得出其合成不確定度為2.07%。
[Abstract]:The plume of solid rocket engine belongs to a kind of special flame, and presents the dynamic characteristics of high-temperature, high-speed and gas-solid two-phase non-equilibrium flow. The temperature of plume is an important parameter to study the combustion process of the propellant, to understand the performance of the engine and to optimize the characteristics of the engine. The flow field of the plume is very complex, and the measurement environment during the ground test run of the solid rocket engine is very bad, so it is difficult to measure. With the development of energy, national defense and space, the measurement of the plume temperature of solid rocket engine is becoming more and more important. The research of solid rocket plume true temperature measurement technology is of great scientific value and practical significance. The multi-wavelength temperature measurement method is a non-contact method, the principle of which is to simultaneously measure the brightness temperature at a plurality of wavelengths of the target to be measured at a certain time, so as to solve the target true temperature. The method has no special requirements for the target to be tested, and is particularly suitable for the true temperature measurement of the high-temperature and very high-temperature target. In this paper, a multi-wavelength temperature measurement method is used to measure the true temperature of the solid rocket plume. The aim of this paper is to study the theoretical basis of the selection of the emissivity samples, and to study the new method of the true temperature construction. The wide-range fiber-type multi-wavelength pyrometer for measuring the true temperature of the solid rocket plume is developed. The invention solves the problem that the existing multi-wavelength pyrometer can not obtain the true temperature of the plume below 1173K, and a new effective wavelength calibration method is researched, and the problem that the traditional calibration method cannot be used for the effective wavelength calibration of an optical fiber type multi-wavelength pyrometer due to the weak signal is solved. Based on the above object, this paper has carried out the research work of the solid rocket engine feather-flame real-temperature measurement technology. The main contents of this paper are as follows: (1) A method for constructing a multi-wavelength true temperature based on a model constraint is proposed for the problem of the lack of theoretical basis for the selection of the emissivity samples in the conventional multi-wavelength true-temperature solution method. In this paper, the traditional multi-wavelength true-temperature solution method is introduced, and the main problems in the traditional method are analyzed. On the basis of the brightness temperature model, the intrinsic relation between the change of the brightness temperature and the change of the emissivity is found by the theory, and the constraint of the emissivity model with universality is put forward. Based on this constraint, a multi-model true-temperature construction method with constraint is established. The simulation results show that the calculation speed of the method can be improved by 81.3%. The model of the emissivity model can effectively screen the emissivity samples and provide a theoretical basis for the selection of the emissivity samples. (2) In order to solve the problem that a single blackbody radiation source cannot be used to measure the true temperature of the plume under 1173K, a wide-range fiber-type multi-wavelength pyrometer for real-temperature measurement of solid rocket plume is developed. The radiation characteristics of the solid rocket plume and the actual demand of the plume temperature measurement are analyzed, and the optical system, the circuit system and the application program of the pyrometer are designed. the optical system adopts the separation structure and the optical fiber far-transmitting technology, so that the aiming performance and the working reliability of the pyrometer are improved. The circuit system adopts the method of parallel photoelectric detector array adjacent image element and the method of automatic switching range of the pre-amplifier circuit, and the calibration method based on the logarithmic function is proposed for the temperature calibration of the 900K-1173K temperature zone, so that the lower limit of the temperature measurement of the pyrometer reaches 900K, The temperature measurement range of the pyrometer is widened to 900K ~ 2700K. (3) To calibrate the actual problem of the optical fiber multi-wavelength pyrometer for the traditional effective wavelength calibration method, a new method of effective wavelength calibration based on temperature calibration is proposed. The traditional effective wavelength calibration method for pyrometer is analyzed. According to the actual temperature calibration data, the internal law of the temperature calibration data of the pyrometer is studied. Based on the Planck's law, the relation model between the calibration data and the effective wavelength of different calibration temperature points is established, and a method for directly determining the effective wavelength by the temperature calibration data is proposed. The method not only provides a new method for rapidly acquiring the effective wavelength, but also avoids the complex time-consuming calibration process. The method was validated by simulation and experiment, respectively. The simulation results show that the relative error between the wavelength value and the theoretical value obtained by the new method is less than 4.7% after the temperature calibration value is added to the random error of 1%, and the maximum absolute value of the relative error between the calculated value of the obtained true temperature and the theoretical value is 0.7%. The experimental results show that the maximum absolute value of the relative error of the wavelength value obtained by the new method is 1. 9% compared with the traditional calibration method, and the maximum value of the absolute error of the obtained true temperature value is 2.4K, which shows that the method is feasible. (4) The experimental results and the uncertainty of the pyrometer were analyzed. The temperature of the halogen tungsten lamp filament and the temperature of the blackbody radiation source are measured in the laboratory by the pyrometer developed in this paper. The results show the correctness and rationality of the pyrometer. The whole process of the true temperature change of the plume in the ground test run of a solid rocket engine is measured, and the experimental results are analyzed. The validity of the multi-wavelength true-temperature construction method based on the model constraint is further verified by using the experimental data. The measurement uncertainty of the pyrometer was analyzed, and the uncertainty of its synthesis was 2.07%.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:V435

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李翔;易新建;;固體火箭發(fā)動(dòng)機(jī)羽焰溫度流場(chǎng)測(cè)試研究[J];航空兵器;2006年06期

2 何傳大;;衛(wèi)星液體姿控發(fā)動(dòng)機(jī)的超高空試驗(yàn)[J];國(guó)外導(dǎo)彈與宇航;1984年05期

3 張平;火箭排氣特征研究進(jìn)展[J];推進(jìn)技術(shù);1992年03期

4 陳力展;幅射高溫計(jì)和光學(xué)高溫計(jì)的原理和使用[J];機(jī)床與工具;1955年13期

5 孟濤;;測(cè)溫至4200℃的高溫計(jì)[J];儀器儀表通訊;1974年01期

6 Д.М.Щербина;邱百存;劉寶明;;快動(dòng)作高溫計(jì)[J];國(guó)外計(jì)量;1980年06期

7 陳去夷;;新型光譜比高溫計(jì)[J];自動(dòng)化儀表;1981年03期

8 安毅;新型雙比色輻射光纖高溫計(jì)[J];儀表技術(shù)與傳感器;1988年02期

9 ;光纖電腦高溫計(jì)[J];紅外技術(shù);1990年05期

10 露珠;;高速取樣高溫計(jì)[J];工具技術(shù);1993年09期

相關(guān)博士學(xué)位論文 前2條

1 梁美;固體火箭發(fā)動(dòng)機(jī)羽焰真溫測(cè)量技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2017年

2 高山;考慮運(yùn)行環(huán)境影響的燃?xì)廨啓C(jī)渦輪葉片輻射測(cè)溫方法研究[D];哈爾濱工業(yè)大學(xué);2017年

相關(guān)碩士學(xué)位論文 前6條

1 梁培龍;三目標(biāo)六波長(zhǎng)高溫計(jì)的研制[D];哈爾濱工業(yè)大學(xué);2015年

2 劉玉莎;基于黑體空腔的光纖高溫測(cè)試系統(tǒng)的研究[D];燕山大學(xué);2010年

3 李兵;基于黑體空腔的光纖高溫計(jì)的研究[D];武漢理工大學(xué);2006年

4 陳錦暉;無(wú)線數(shù)據(jù)傳輸工業(yè)高溫計(jì)的研究[D];沈陽(yáng)工業(yè)大學(xué);2013年

5 李林;光纖高溫計(jì)的研究[D];東北大學(xué);2011年

6 陳天慧;光纖高溫測(cè)量的研究[D];武漢理工大學(xué);2004年

,

本文編號(hào):2394790

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2394790.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2302e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com