稀土摻雜低維結(jié)構(gòu)熒光粉的濕法合成與光熱轉(zhuǎn)換特性的研究
[Abstract]:As a bridge connecting the national economic system, it is of great practical significance to improve the energy saving and environmental protection ability of transportation tools. The application of rare-earth doped solid state lighting source in vehicles, ships and aircraft can greatly reduce the energy consumption and improve the energy saving and environmental protection ability of these vehicles. At the same time, the temperature sensing and photothermal conversion characteristics of rare earth ions are expected to have potential applications in monitoring and maintenance of precision microelectronic instruments. With the development of nanometer science and technology, the new optical, electrical, magnetic, acoustic and catalytic properties of low-dimensional nanomaterials have become a hot research topic. It is of great significance to realize the controllable synthesis of low-dimensional nanomaterials. In addition, rare earth doped photothermal conversion materials have potential applications in the field of microbial inactivation of ship ballast water. In this paper, the wet chemically controlled synthesis of rare earth doped micro and nano materials is studied, and the temperature sensing and photothermal conversion characteristics of these rare earth ions in low dimensional nanomaterials are studied in detail. The main results are as follows: (1) CaSn03,NaYF_4,YP04,NaLa (W04) 2 and NaLa (Mo04) 2 microstructures were successfully prepared by microwave hydrothermal method. The crystallographic and morphologic characteristics of these samples were characterized and analyzed. The results show that most of the synthesized samples are pure phase and their morphology is influenced by the complex and pH value of reaction solution. (2) NaY (WO_4) _ 2 micron flower spheres were prepared by microwave hydrothermal method. The XRD characterization of the sample confirmed that the product was pure phase NaY (WO_4) _ 2. The results of SEM characterization showed that the amount of complex Na3Cit affected the morphology of the product. The possible growth mechanism of NaY (WO_4) _ 2 microspheres was deduced. (3) the controllable synthesis of NaY (MoO_4) _ 2 microstructures under hydrothermal conditions was achieved, and the pH value of reaction solution and the concentration of complex were studied. The effect of reactant concentration on the crystal phase and morphology of the product, The possible growth mechanism of NaY (WO_4) _ 2 microstructures was given. (4) the temperature sensing properties of Er~ (3) ions in NaY (WO_4) _ 2 micron-sphere system were studied, and the morphology of the samples was revealed. The weak effect of Er~ (3) ion doping concentration and Yb~ (3) ion doping concentration on the temperature sensing characteristics of Er~ (3) ion. Using Er~ (3) doped NaY (WO4) 2 microsphere as the fluorescence temperature probe, the photothermal conversion characteristics of Tm~ (3) doped NaY (WO_4) 2 microsphere were studied. It was proved that the Tm~ (3) ion was compared with Er~ (3). Tm~ (3) ions have higher photothermal conversion efficiency. (5) Er~ (3) doped NaY (MoO_4) _ 2 nanorods were used as fluorescence probe to investigate the photothermal conversion properties of Sm~ (3) doped with the substrate. The results show that the doping concentration of Sm~ (3) and Yb~ (3) ions will affect the photothermal conversion characteristics of the samples. The effect of Yb~ (3) ion concentration was more significant. (6) NaYF_4:Er~ (3) / Yb~ (3) @ NaYF_4:Sm~ (3) / Yb~ (3) nanocrystalline core-shell structure was successfully prepared by high temperature pyrolysis. The results of XRD show that the synthesized samples are pure phase, and the crystallinity of the samples is improved by coating the shell layer. The results of TEM characterization show that the change of the concentration of Yb~ (3) doped ions in the shell layer has an effect on the final size and morphology of the product. The temperature sensing of the core layer and the photothermal conversion of the shell layer are realized, and the heating effect is affected by the concentration of Yb~ (3) ions in the shell layer.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U664.92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣家興;趙劍曦;姜蓉;;太陽光熱轉(zhuǎn)換吸收薄膜制備方法:現(xiàn)狀與發(fā)展[J];材料導(dǎo)報(bào);2009年21期
2 劉景蘭;一種液態(tài)太陽能集熱器[J];能源研究與信息;1988年01期
3 ;激光醫(yī)學(xué)熱處理用高摻雜光纖光熱轉(zhuǎn)換器研究[J];中國(guó)計(jì)量學(xué)院學(xué)報(bào);2001年02期
4 王國(guó)偉;堯克光;焦青太;劉廣虎;;3類光熱轉(zhuǎn)換涂層的力學(xué)、光學(xué)和集熱性能研究[J];電鍍與涂飾;2012年04期
5 李洪祥;;空間電力供應(yīng)技術(shù)[J];國(guó)外空間動(dòng)態(tài);1990年06期
6 蔣家興;趙劍曦;廖新煥;李鎮(zhèn)祥;姜蓉;;溶膠-凝膠法制備Ni-Al_2O_3太陽光熱轉(zhuǎn)換吸收薄膜:過渡金屬篩選和還原[J];功能材料;2009年10期
7 蔣家興;趙劍曦;廖新煥;姜蓉;;Ni-Al_2O_3太陽光熱轉(zhuǎn)換吸收薄膜的制備[J];應(yīng)用化學(xué);2010年03期
8 李博文;;封底照片說明[J];現(xiàn)代物理知識(shí);2011年02期
9 揚(yáng)倫華;;專利技術(shù)介紹太陽能光熱轉(zhuǎn)換器 專利號(hào):85201329.9[J];太陽能;1987年02期
10 衛(wèi)欣;;太陽墻干燥技術(shù)在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J];太陽能;2008年07期
相關(guān)會(huì)議論文 前2條
1 陳志鋼;余諾;胡俊青;;用于癌癥治療的半導(dǎo)體光熱轉(zhuǎn)換納米材料[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第35分會(huì):納米生物醫(yī)學(xué)中的化學(xué)問題[C];2014年
2 曹韞真;胡行方;;光譜選擇性吸收涂層[A];21世紀(jì)太陽能新技術(shù)——2003年中國(guó)太陽能學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2003年
相關(guān)重要報(bào)紙文章 前1條
1 房琳琳;新型太陽能涂層光熱轉(zhuǎn)換率達(dá)90%[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前3條
1 孟周琪;有機(jī)/無機(jī)雜化納米光熱轉(zhuǎn)換材料的合成及其在腫瘤治療中的應(yīng)用研究[D];東華大學(xué);2017年
2 鄭輝;稀土摻雜低維結(jié)構(gòu)熒光粉的濕法合成與光熱轉(zhuǎn)換特性的研究[D];大連海事大學(xué);2017年
3 宋國(guó)勝;納米半導(dǎo)體光熱轉(zhuǎn)換材料的合成及在光熱治療和化療上的應(yīng)用探索[D];東華大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 張龍;離子液體基納米流體的輻射特性和光熱轉(zhuǎn)換性能研究[D];華南理工大學(xué);2015年
2 苑曉貞;Fe_3O_4基光熱復(fù)合材料的制備及性能研究[D];青島科技大學(xué);2015年
3 李雷雷;過氧化物納米酶的制備及其綠色催化合成水溶性導(dǎo)電聚合物的研究[D];青島科技大學(xué);2015年
4 周玲;油基納米流體的光熱轉(zhuǎn)換性能研究[D];華南理工大學(xué);2016年
5 石海峰;光熱轉(zhuǎn)換蓄熱調(diào)溫纖維的研制[D];天津工業(yè)大學(xué);2002年
6 相蘇原;稀土摻雜鎢酸釔鈉熒光粉的上轉(zhuǎn)換光譜性質(zhì)及光熱轉(zhuǎn)換機(jī)理研究[D];大連海事大學(xué);2016年
7 徐步鋒;Ag/Ag_2S納米材料的制備、表征及其光熱轉(zhuǎn)換性能研究[D];青島科技大學(xué);2014年
8 從博;金納米棒的光熱轉(zhuǎn)換及其組裝與表面包覆研究[D];南京航空航天大學(xué);2014年
,本文編號(hào):2370906
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2370906.html