面向諧振式微光學陀螺的高Q平面光波導諧振腔研究
[Abstract]:In recent years, the resonant micro-optical gyroscope has become one of the hot spots of the research at home and abroad. The resonant micro-optical gyro based on the Sagnac effect is of great potential in the development of integration and miniaturization. the resonant micro-optical gyroscope integrates a light source, a modulator, a detector and a resonant cavity and other key devices on a chip by a mature semiconductor processing technology, and has the advantages of small volume, all-solid-state, impact resistance and the like. The optical waveguide resonant cavity is used as the core sensitive element of the resonant type micro-optical gyroscope, and the optical characteristic of the optical waveguide resonant cavity is seriously affected by the performance of the gyroscope. In this paper, the optical transmission characteristics of the optical waveguide resonant cavity are deeply analyzed, and the key characteristic parameters of the resonant cavity influencing the performance of the gyroscope are discussed. In the light of the low quality factor of the current optical waveguide resonant cavity, the key problems such as the lack of optimization of the structure parameters of the resonant cavity are studied, the design and processing method of the silicon dioxide optical waveguide resonant cavity is proposed, and the quality factor of the resonant cavity is improved. The main contents of this paper can be divided into the following aspects: 1) The design and processing method of high Q-doped silicon dioxide optical waveguide resonant cavity is proposed. In the light of the requirement of the resonant micro-optical gyro to the optical waveguide resonant cavity, an effective refractive index method and a beam propagation method are adopted to analyze the buried doped silicon dioxide optical waveguide, and the parameters such as the deep width and the maximum bending radian of the optical waveguide are calculated. A doped silicon dioxide optical waveguide resonant cavity is prepared by plasma chemical vapor deposition, photolithography and reactive ion etching on a silicon substrate. The cross-sectional dimension of the prepared silicon optical waveguide is 6. m u.m to 6. m u.m, the transmission loss is 0.017 dB/ cm, and the optical waveguide resonant cavity is an annular runway structure with a size of 2 cm to 3. 6 cm. The resonant curve test system of the optical waveguide resonant cavity is constructed, and the quality factor of the prepared silicon-doped silicon dioxide optical waveguide resonant cavity is high (107. 2), and the structure optimization method of the optical waveguide resonant cavity facing the resonant micro-optical gyroscope is proposed. Based on the principle of the signal detection of the resonant type optical waveguide gyro, the under-coupled state is proposed from the angle of the gyro's sensitivity and the resonance depth is equal to 0.75. The design parameters of the optical waveguide resonant cavity are applied to the resonant micro-optical gyro. Through the analysis of the resonant cavity, the characteristic parameters such as the half-height and the resonance depth of the resonance spectrum exhibited by the resonant cavity are different in different coupling states. Compared with the quality factor of the resonant cavity theoretically and experimentally, the variation trend of the resonance depth under different coupling conditions is compared, and the triangular wave modulation and demodulation process of the resonant micro-optical gyroscope is combined. The characteristic structure parameter of the optical waveguide resonant cavity which maximizes the sensitivity of the gyro is obtained. Based on the relation between the length of the cavity and the half-height of the resonance spectrum, a design structure of a double-loop optical waveguide resonant cavity is proposed. such a structure can improve its quality factor by lifting the cavity length of the optical waveguide cavity within a limited chip space. In this paper, the influence of the cavity length on the quality factor of the resonant cavity is verified by the optical fiber experiment of different length of the optical fiber coupler, and the optical fiber ring-shaped resonant cavity with the cavity length of 100 meters and the quality factor of 6.74-109 is obtained. On the silicon substrate, a double-ring-type design structure is also designed, with a cavity length of 21. 6cm of a silicon dioxide optical waveguide resonant cavity, and the quality factor of the silicon dioxide optical waveguide resonant cavity with the cavity length of 21. 6 cm is measured to reach 2-107. Through the above research, the optical waveguide resonant cavity with high quality factor is prepared, and the optimization method and the double-loop optical waveguide structure facing the application of the resonant micro-optical gyroscope are proposed, and the key technical problems of the prior art of the optical waveguide resonant cavity are solved, and lays a good foundation for the research of the resonant micro-optical gyroscope.
【學位授予單位】:中北大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TH74
【相似文獻】
相關(guān)期刊論文 前10條
1 K.E.B.Thornton;葛楚鑫;;新型光激勵諧振式壓力傳感器[J];國外計量;1989年04期
2 李平;;諧振式無線輸電的可行性研究[J];廣西師范學院學報(自然科學版);2009年01期
3 鄭越;黃付剛;張代潤;石曉麗;;一種諧振式DC/DC變換器的設(shè)計與研究[J];電力電子技術(shù);2007年10期
4 張建輝;徐鵬飛;馬可貞;薛晨陽;張文棟;閆樹斌;;諧振式陀螺檢測信號調(diào)制技術(shù)研究[J];傳感技術(shù)學報;2013年07期
5 樊尚春;楊軍;肖志敏;蔡晨光;;硅諧振式微傳感器開環(huán)特性測試與數(shù)據(jù)處理[J];宇航學報;2006年05期
6 施克仁,郭寓岷,孫滌清,吳敏生,康清生;大功率IGBT諧振式中頻逆變電源的研制[J];電工技術(shù)雜志;1996年02期
7 王兆強;劉海利;徐天柱;陳加浪;黃震宇;;諧振式壓電疊堆的高效換能結(jié)構(gòu)研究[J];振動與沖擊;2011年12期
8 王鋒;諧振式汽車懸掛測試系統(tǒng)的分析[J];淮陰工學院學報;2003年03期
9 張震宇,盧霞;開關(guān)電源中諧振式變換器研究[J];蘭州石化職業(yè)技術(shù)學院學報;2005年02期
10 周迅;俞小莉;;諧振式曲軸疲勞試驗誤差分析及載荷標定方法[J];農(nóng)業(yè)機械學報;2007年04期
相關(guān)會議論文 前1條
1 秦廷楷;王亞石;李哨華;;諧振式波導—同軸線轉(zhuǎn)換器[A];1995年全國微波會議論文集(上冊)[C];1995年
相關(guān)重要報紙文章 前2條
1 青海 陳憲和;也談諧振式濾波器諧振電容的選取[N];電子報;2005年
2 河北 劉瑞璽;諧振式濾波器諧電容的選取[N];電子報;2005年
相關(guān)博士學位論文 前5條
1 李中啟;磁耦合諧振式無線電能傳輸系統(tǒng)效率分析與優(yōu)化[D];湖南大學;2016年
2 陳琛;諧振式無線電能傳輸系統(tǒng)的若干電磁問題研究及優(yōu)化設(shè)計[D];東南大學;2016年
3 錢坤;面向諧振式微光學陀螺的高Q平面光波導諧振腔研究[D];中北大學;2017年
4 何曉陽;微波頻段非諧振式Metamaterial結(jié)構(gòu)及其應用的研究[D];清華大學;2011年
5 唐雄民;大功率串聯(lián)負載諧振式臭氧發(fā)生器供電電源的研究[D];湖南大學;2007年
相關(guān)碩士學位論文 前10條
1 俞亦茂;基于掩膜—無掩膜腐蝕的硅微諧振式加速度計關(guān)鍵工藝研究[D];中國計量學院;2015年
2 陳思語;一種諧振式無線電能傳輸系統(tǒng)的研究[D];中國計量學院;2015年
3 吳二雷;基于磁耦合諧振式無線供電系統(tǒng)的研究與設(shè)計[D];東北大學;2014年
4 達霆;磁耦合諧振式無線傳能實驗系統(tǒng)設(shè)計與傳輸特性研究[D];華中科技大學;2014年
5 何亞偉;磁耦合諧振式無線電能與信號同步傳輸方法研究[D];天津工業(yè)大學;2016年
6 謝民燦;諧振式無線電能傳輸裝置的系統(tǒng)分析與設(shè)計[D];華南理工大學;2016年
7 漆志婉;諧振式油品檢測系統(tǒng)設(shè)計[D];南京理工大學;2016年
8 屠張杰;基于磁耦合諧振式無線能量與信號同步傳輸技術(shù)研究[D];南京理工大學;2016年
9 周俊巍;多發(fā)射線圈磁耦合諧振式無線電能傳輸系統(tǒng)的研究[D];南京理工大學;2016年
10 李均龍;兩負載的諧振式無線輸電系統(tǒng)設(shè)計與研究[D];電子科技大學;2016年
,本文編號:2350909
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2350909.html