大型復(fù)雜輪廓真空室焊接模擬及殘余應(yīng)力消除方法研究
[Abstract]:The vacuum chamber is the core part of a magnetically confined nuclear fusion reactor, which mainly supports the internal components, and provides a steady-state operation environment for the plasma, so that the size precision, the structural stability and the fatigue life of the vacuum chamber are high. the vacuum chamber is a double-layer shell structure with a complex profile, and the cross section is D-shaped, and has the characteristics of large size, large weight, complex structure and high requirements on the material performance. The vacuum chamber is combined by 8 sectors, and each 1/ 8 sector is welded by four 1/ 32 sectors in the manufacturing process, and the 1/ 32 sector is welded by four PS segments, and each PS segment is formed by splicing and welding the press-molded parts. many welding methods are used in the vacuum chamber forming process, such as argon arc welding, electron beam welding, narrow gap welding, and the like. The welding is thermally deformed by the local thermal input, and the welding deformation affects the accuracy of the forming dimension of the vacuum chamber, so that the welding deformation is controlled during the welding process. In order to control the welding deformation of the vacuum chamber, the welding deformation of the vacuum chamber is predicted by using the inherent variable method, and the influence of the welding sequence and the external constraint on the welding deformation is mainly studied. The welding deformation of PS1, PS2/ PS4, PS3, 1/ 32 and 1/ 16 sectors is simulated by setting different welding sequences, and the corresponding weldments are activated in the welding deformation simulation according to the welding sequence. According to the welding deformation in the absence of external constraint, the external constraint conditions are set, and the influence of the external constraint on the welding deformation is studied. The results show that the welding sequence is different from the welding component deformation and the maximum welding deformation position, and the application of the external constraint can significantly reduce the welding deformation. Through the simulation of the welding deformation, the external constraint conditions can be established, and the welding scheme with the minimum welding deformation can be determined, and the reference can be provided for engineering practice. In the process of welding, the method of rigid constraint is used to control the welding deformation, so that a large residual stress can be generated after the vacuum chamber is welded, the residual stress can cause stress corrosion to the welding structure, and the micro-crack expansion is caused, and the stability and the fatigue life of the vacuum chamber are greatly affected. In order to reduce the influence of welding residual stress on the vacuum chamber, it is necessary to eliminate the welding residual stress in the welding process and after the welding. The method of eliminating residual stress in vacuum chamber is limited by the influence of the structure, weight and material property of the vacuum chamber. The method of comparing residual stress suitable for vacuum chamber welding includes heat treatment, ultrasonic impact welding, shot blasting and vibration. In order to carry out the corresponding process research to the above-mentioned method, a welding test plate similar to the weld structure of the vacuum chamber was designed, the process of narrow gap welding was simulated by using the thermoelastic-plastic method, and the welding temperature field and the stress field were obtained. The results show that the temperature in the welding process is periodically changed, The welding temperature field and the stress field are distributed symmetrically with respect to the weld. The welding simulation results are used as initial conditions, and the influence of ultrasonic impact on welding residual stress is simulated. The results show that the residual stress distribution of the transverse and longitudinal welding can be obviously improved with the ultrasonic impact, and the residual compressive stress is introduced for the impact area. The effect of shot peening on the residual stress is simulated by using the SPH method as the initial condition, and the results show that the SPH method can be used to simulate the shot peening, and the distribution of residual stress in the transverse and longitudinal direction can be obviously improved by using the SPH method. and a residual compressive stress is generated on the surface layer of the impact area. The parameters of the vibration aging of PS1, PS2/ PS4, PS3, 1/ 32 and 1/ 16 sectors are given by software simulation, including the supporting point, the excitation point, the excitation frequency, the shock force and the shock time. The heat treatment process after vacuum chamber welding is developed under the condition of comprehensive consideration of material property, structural deformation and destress effect, and the experimental research is carried out according to the heat treatment process. The results show that the heat treatment can effectively reduce the amplitude of welding residual stress. and the distribution of the welding residual stress is improved.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TL628
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;第12屆全國(guó)殘余應(yīng)力學(xué)術(shù)交流會(huì)在武漢召開[J];無損檢測(cè);2003年01期
2 ;第15屆全國(guó)殘余應(yīng)力學(xué)術(shù)交流會(huì)第1輪通知[J];電鍍與環(huán)保;2009年03期
3 ;熱烈祝賀殘余應(yīng)力專業(yè)委員會(huì)成立[J];機(jī)械工程材料;2010年01期
4 周喜來;蔣士杰;劉瑞光;;石化在役設(shè)備的焊縫殘余應(yīng)力的消除與控制[J];中國(guó)新技術(shù)新產(chǎn)品;2012年02期
5 ;第17屆全國(guó)殘余應(yīng)力學(xué)術(shù)會(huì)議暨國(guó)際殘余應(yīng)力研討會(huì)(第1輪通知)[J];中國(guó)機(jī)械工程;2013年08期
6 劉助柏;;確定護(hù)環(huán)殘余應(yīng)力分OH的測(cè)量理娭與方法[J];東北重型機(jī)械學(xué)院學(xué)報(bào);1978年01期
7 李廣鐸;蘇建新;王維容;劉柏梁;;鞲鞴?jié)q圈殘余應(yīng)力的測(cè)試與分析[J];機(jī)車車輛工藝;1982年05期
8 肖杰;;殘余應(yīng)力測(cè)定儀[J];國(guó)外內(nèi)燃機(jī)車;1984年11期
9 楊百川;;殘余應(yīng)力對(duì)汽車零件疲勞壽命的影響[J];汽車配件;1984年03期
10 曾春華;;殘余應(yīng)力對(duì)疲勞的影響[J];機(jī)械強(qiáng)度;1984年03期
相關(guān)會(huì)議論文 前10條
1 陳超;潘春旭;;殘余應(yīng)力測(cè)量技術(shù)的現(xiàn)狀和發(fā)展[A];湖北省第九屆熱處理年會(huì)論文集[C];2004年
2 游敏;鄭小玲;;對(duì)接接頭橫向殘余應(yīng)力調(diào)控技術(shù)研究[A];中西南十省區(qū)(市)焊接學(xué)會(huì)聯(lián)合會(huì)第九屆年會(huì)論文集[C];2006年
3 張小勇;楚建新;葉軍;陸艷杰;劉鑫;;銅應(yīng)力緩解層對(duì)陶瓷-金屬連接殘余應(yīng)力的影響[A];電子陶瓷,陶瓷,金屬封接與真空開頭管用管殼的技術(shù)進(jìn)步專輯[C];2006年
4 鄭杰;張顯程;;高溫環(huán)境誘導(dǎo)的表面強(qiáng)化處理殘余應(yīng)力的釋放[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
5 朱麗娜;徐濱士;王海斗;王成彪;;相關(guān)技術(shù)在殘余應(yīng)力檢測(cè)中的應(yīng)用[A];第八屆全國(guó)表面工程學(xué)術(shù)會(huì)議暨第三屆青年表面工程學(xué)術(shù)論壇論文集(二)[C];2010年
6 潘勤學(xué);栗勇;徐春廣;肖定國(guó);楊向臣;伍懿;;超聲法焊縫殘余應(yīng)力檢測(cè)技術(shù)研究[A];2011年機(jī)械電子學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
7 任小平;劉怡;;一種無損測(cè)試焊接板件殘余應(yīng)力的方法[A];第九屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ卷[C];2000年
8 游敏;鄭小玲;;對(duì)接接頭橫向殘余應(yīng)力調(diào)控技術(shù)研究[A];湖北省暨武漢焊接學(xué)會(huì)成立二十五周年2005年焊接學(xué)術(shù)年會(huì)文集[C];2005年
9 宇慧平;韓長(zhǎng)錄;;超高強(qiáng)鋼電阻點(diǎn)焊殘余應(yīng)力研究[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
10 鄭永男;左翼;周冬梅;范平;袁大慶;朱升云;;正電子湮沒方法研究材料中殘余應(yīng)力[A];第四屆全國(guó)反應(yīng)堆物理與核材料學(xué)術(shù)研討會(huì)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前6條
1 實(shí)習(xí)記者 王恒;控制殘余應(yīng)力——尋找加工變形的解決之道[N];中國(guó)航空?qǐng)?bào);2014年
2 陶萍萍;中建鋼構(gòu)用新技術(shù)消除鋼板墻殘余應(yīng)力[N];現(xiàn)代物流報(bào);2013年
3 ;殘余應(yīng)力與加工變形控制技術(shù)[N];中國(guó)航空?qǐng)?bào);2013年
4 ;抗疲勞制造工藝優(yōu)化方案[N];中國(guó)航空?qǐng)?bào);2013年
5 ;殘余應(yīng)力與變形控制整體解決方案在航空鋁合金鍛件中的應(yīng)用[N];中國(guó)航空?qǐng)?bào);2013年
6 藺軍 謝艷花;央視新樓鋼構(gòu)制作特點(diǎn)與加工工藝[N];建筑時(shí)報(bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 姜杰鳳;高鎖螺栓干涉安裝及其對(duì)螺接結(jié)構(gòu)力學(xué)性能的影響[D];浙江大學(xué);2014年
2 李峰;基于定位強(qiáng)化感應(yīng)加熱技術(shù)的磨削表面殘余應(yīng)力控制研究[D];清華大學(xué);2015年
3 王軍強(qiáng);大型殼體結(jié)構(gòu)焊接變形及殘余應(yīng)力調(diào)控方法研究[D];北京交通大學(xué);2016年
4 董亞波;2A14鋁合金厚板殘余應(yīng)力表征及消減工藝研究[D];哈爾濱工業(yè)大學(xué);2016年
5 林松盛;Ti-TiN-Zr-ZrN抗沖蝕多層膜的制備、結(jié)構(gòu)及性能[D];華南理工大學(xué);2016年
6 潘龍;脈沖電流法調(diào)控碳鋼殘余應(yīng)力的機(jī)理及相關(guān)實(shí)驗(yàn)研究[D];浙江大學(xué);2016年
7 周澤斌;薄壁結(jié)構(gòu)件加工變形機(jī)理及夾具優(yōu)化設(shè)計(jì)方法研究[D];東華大學(xué);2011年
8 計(jì)鵬飛;內(nèi)部殘余應(yīng)力的SWXRD方法及在攪拌摩擦焊鋁合金板中的應(yīng)用[D];北京科技大學(xué);2017年
9 沈磊;基于壓痕隆起量的殘余應(yīng)力測(cè)試方法與實(shí)驗(yàn)研究[D];華中科技大學(xué);2016年
10 修磊;大型復(fù)雜輪廓真空室焊接模擬及殘余應(yīng)力消除方法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 馮誠(chéng)誠(chéng);Ti-TiN-Zr-ZrN多層膜殘余應(yīng)力及疲勞性能的研究[D];華南理工大學(xué);2015年
2 任喜強(qiáng);熱軋H700×300型鋼殘余應(yīng)力的控制[D];河北聯(lián)合大學(xué);2014年
3 宋金潮;非調(diào)質(zhì)鋼棒材軋后冷卻過程殘余應(yīng)力數(shù)值模擬及實(shí)驗(yàn)研究[D];燕山大學(xué);2015年
4 翟紫陽;超高強(qiáng)鋼厚板結(jié)構(gòu)件MIG焊溫度場(chǎng)應(yīng)力場(chǎng)數(shù)值模擬及試驗(yàn)研究[D];南京理工大學(xué);2015年
5 康玲;正交異性鋼橋面板縱、橫肋焊接殘余應(yīng)力數(shù)值模擬[D];西南交通大學(xué);2015年
6 孫彥文;Q345B鋼等離子-MAG復(fù)合焊工藝研究[D];西南交通大學(xué);2015年
7 王曉臣;面向衛(wèi)星零件工藝設(shè)計(jì)的拓?fù)鋬?yōu)化技術(shù)研究[D];北華航天工業(yè)學(xué)院;2015年
8 劉何亮;U肋與頂板連接焊縫殘余應(yīng)力的三維數(shù)值模擬[D];西南交通大學(xué);2015年
9 周鵬;微晶玻璃磨削表面的殘余應(yīng)力研究[D];蘇州大學(xué);2015年
10 張愛愛;基于SYSWELD的7A52鋁合金雙絲MIG焊殘余應(yīng)力分析[D];內(nèi)蒙古工業(yè)大學(xué);2015年
,本文編號(hào):2349315
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2349315.html