長大線路服役狀態(tài)演化模型及關(guān)鍵參數(shù)估計算法研究
[Abstract]:High-speed railway is a complex large system, and service performance of train and line infrastructure changes dynamically with long-term operation. As the speed of train operation is greatly improved, the dynamic effect between wheel and rail is increased, resulting in the strengthening of the dynamic role of the infrastructure. China's high-speed railway is running on a large scale, and the line crosses multiple climatic zones, and the service performance is more complex. The decline of service performance of the line infrastructure leads to more bursty and serious potential disease, which greatly affects the operation safety of the line. Grasp the formation and distribution laws of the state parameters of the infrastructure, accurately sense the change trend of the state parameters of the critical section components, establish and perfect the scientific line health service status guarantee system, and have important significance for ensuring the safe and stable operation of the high-speed railway. In order to reflect the critical parameter orbital stress of line safety, this paper presents a study on multi-scale dynamic static modeling of seamless line and related parameter intelligent estimation algorithm, considering the evolution of service state of growth line, considering the slow change of temperature factor and transient effect of vehicle impact. The influence of rail stress on dynamic response of rail is analyzed, and the theory basis is provided for the detection and evaluation of rail stress. First, a gradual homogenization method for calculating the average performance parameters of large structures is put forward, and a multi-scale static model of growth line under the action of diurnal temperature and seasonal temperature is established. According to the structure characteristics of different sections in the circuit, different simulation scales are used to analyze the evolution rules of state parameters in each section. The refined model of retaining critical detail is established by using fine scale in line focus area. In this paper, the average performance of the typical structure is extracted and the macroscopic scale model is established. A multi-scale global line model is formed by the principle of consistent boundary behavior of local models with different scales, and the process of redistribution of line stress caused by local structural changes is simulated. In order to improve the calculation accuracy of the rail under multiple loads, an improved long rail unit is used in the multi-scale model, which takes into account the nonlinear effect of the unit cross-section rotation on the longitudinal and transverse displacement fields. At the same time, in order to calculate the accumulative deformation of the track under cyclic load, the constraint relation between the nonlinear connection unit and the contact unit of the sliding working condition can be reflected in the model. The validity and accuracy of the modeling method are verified by comparing the field measurement data of the transition section of the Beijing-Hangzhou Canal Bridge and the Xinqiao River Bridge of the Beijing-Hangzhou High-speed Railway. Secondly, the dynamic model of vehicle-rail coupling under longitudinal stress of rail is established, and the influence of longitudinal stress on rail and dynamic response of rail is analyzed. The differential equation of rail vibration considering longitudinal stress is presented. In this paper, the exact analytical form of the inherent vibration characteristics of the plate-type track on the longitudinal stress of the rail is derived by analyzing and re-combining the segment analysis of the track model, and the change of the inherent vibration characteristics of the rail under different longitudinal stress of the rail is studied. A modified track mode and frequency are introduced to calculate the dynamic response of the rail with the longitudinal stress of the rail. The influence of different vehicle speed and uneven condition on the rail stress in dynamic response of vehicle rail is analyzed by simulation test, and the theoretical foundation is provided for carrying out the research on the stress estimation algorithm based on the dynamic response of the rail. Finally, the rail stress intelligent estimation algorithm based on wheel-rail vibration response was carried out on the basis of mastering the stress distribution law of the track rail, and based on the significant correlation between wheel-rail dynamic response and longitudinal stress of rail. A rapid classification model of stress based on support vector machine is put forward, and the rail stress fast classification under vehicle-mounted condition is realized by measuring wheel-rail dynamic response. At the same time, the stress parameter estimation model based on genetic algorithm is proposed for the interference of strong orbit irregularity. The stress solution is transformed into the model parameter estimation problem, the continuity of stress distribution is utilized, and the calculation efficiency and accuracy of the estimation algorithm are improved. The recognition precision and applicable condition of these two methods are analyzed by simulation test. The research results help to construct a comprehensive monitoring system for service status of high-speed railway lines in our country, and provide theoretical and methodological support for scientific guidance and maintenance maintenance.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:U216
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉德華;變后掠飛行時飛機(jī)縱向動態(tài)響應(yīng)規(guī)律探討[J];空氣動力學(xué)學(xué)報;1985年02期
2 邱傳仁;周文伯;嚴(yán)震;;飛機(jī)對離散突風(fēng)的動態(tài)響應(yīng)[J];上海交通大學(xué)學(xué)報;1986年05期
3 陳廷楠;徐浩軍;;垂直機(jī)動飛行時飛機(jī)投外掛后的動態(tài)響應(yīng)[J];飛行力學(xué);1987年03期
4 陳廷楠;徐浩軍;;定常盤旋飛行時飛機(jī)投外掛后的動態(tài)響應(yīng)[J];飛行力學(xué);1989年02期
5 王靜靜;鄭七振;;預(yù)制短板浮置板軌道落軸沖擊動態(tài)響應(yīng)[J];佳木斯大學(xué)學(xué)報(自然科學(xué)版);2012年04期
6 汪茂海,郭航,馬重芳;運行參數(shù)對直接甲醇燃料電池動態(tài)響應(yīng)的影響Ⅰ.甲醇溶液濃度和流量[J];電源技術(shù);2005年05期
7 李家源;馬國營;;低壓無功功率補(bǔ)償裝置的動態(tài)響應(yīng)試驗新方法[J];低壓電器;2013年04期
8 許秋蓮,,劉元鏞,湯玄春,李玉龍;結(jié)構(gòu)考慮雙非線性的動態(tài)響應(yīng)[J];西北工業(yè)大學(xué)學(xué)報;1995年02期
9 余紅路,沈靜珠,胡山鷹;化工過程動態(tài)響應(yīng)特征的提取及分類方法[J];化工學(xué)報;1998年01期
10 王野牧,張新敏,周忠喜,宋勝憲;液壓系統(tǒng)動態(tài)響應(yīng)計算方法比較[J];沈陽工業(yè)大學(xué)學(xué)報;1998年01期
相關(guān)會議論文 前8條
1 尚鴻雁;;二維PSD動態(tài)響應(yīng)誤差分析[A];高精度幾何量光電測量與校準(zhǔn)技術(shù)研討會論文集[C];2008年
2 姜清輝;羅先啟;豐定祥;;水壓爆破沖擊波荷載作用下梁的動態(tài)響應(yīng)[A];新世紀(jì)巖石力學(xué)與工程的開拓和發(fā)展——中國巖石力學(xué)與工程學(xué)會第六次學(xué)術(shù)大會論文集[C];2000年
3 張軍偉;陳偉;周憶;陳良明;周海;林東暉;;大口徑反射鏡架特征參數(shù)對其動態(tài)響應(yīng)影響分析[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
4 白士紅;李曉雷;龐思勤;談?wù)\;;沖擊力作用下的人體動態(tài)響應(yīng)的研究[A];人-機(jī)-環(huán)境系統(tǒng)工程研究進(jìn)展(第七卷)[C];2005年
5 魏翠玲;周晶;王復(fù)明;;粘彈性層狀地基的動態(tài)響應(yīng)[A];第八屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅲ卷)[C];1999年
6 廖晨聰;鄭東生;;波流共同作用下海床土體全動態(tài)響應(yīng)的解析解[A];第九屆全國工程地質(zhì)大會論文集[C];2012年
7 張青平;陳成軍;陳剛;李思忠;;高速撞擊下含間隙結(jié)構(gòu)的動態(tài)響應(yīng)數(shù)值模擬[A];中國工程物理研究院科技年報(2002)[C];2002年
8 成自龍;韓延方;王玉蘭;范景連;姜俊成;趙偉;曾文藝;劉來福;;人體沖擊與人體代用品關(guān)系的研究——獼猴與人動態(tài)響應(yīng)規(guī)律的研究[A];第二屆全國人—機(jī)—環(huán)境系統(tǒng)工程學(xué)術(shù)會議論文集[C];1995年
相關(guān)博士學(xué)位論文 前2條
1 郭一詩;長大線路服役狀態(tài)演化模型及關(guān)鍵參數(shù)估計算法研究[D];北京交通大學(xué);2017年
2 毛虎平;基于仿真模型的動態(tài)響應(yīng)優(yōu)化算法研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 曹勇;多點變約束下硬旋銑大型螺紋的動態(tài)響應(yīng)與表面粗糙度研究[D];南京理工大學(xué);2015年
2 范原;脈沖負(fù)載直流變換器輸出動態(tài)響應(yīng)的研究[D];哈爾濱工業(yè)大學(xué);2015年
3 楊波;多激勵下8L265機(jī)體的動態(tài)響應(yīng)分析[D];大連理工大學(xué);2015年
4 孟曉永;電磁軌道炮復(fù)合型軌道的動態(tài)響應(yīng)[D];燕山大學(xué);2016年
5 李歡;基于H∞及V~2控制的高魯棒性高動態(tài)響應(yīng)控制方法研究[D];哈爾濱工業(yè)大學(xué);2016年
6 胡鵬;基于動態(tài)響應(yīng)的路面結(jié)構(gòu)優(yōu)化分析[D];中國民航大學(xué);2015年
7 謝暉;水下沖擊波作用下水面結(jié)構(gòu)物動態(tài)響應(yīng)研究[D];大連理工大學(xué);2010年
8 陳霞;無鉛BGA封裝跌落沖擊動態(tài)響應(yīng)和失效分析[D];太原理工大學(xué);2014年
9 江笠宇;數(shù)字開關(guān)電源中時域最優(yōu)控制方法的研究與設(shè)計[D];吉林大學(xué);2014年
10 胡國輝;汽車撞擊下鋼筋混凝土框架的動態(tài)響應(yīng)及損傷機(jī)理研究[D];天津大學(xué);2016年
本文編號:2254009
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2254009.html