仿人眼光學(xué)系統(tǒng)與視覺注意機理研究
[Abstract]:With the development of Engineering technology, visual imaging and information processing systems have been widely used in daily life. After a long period of evolution, the human eye has formed a unique optical structure and visual information processing mechanism, which provides a new idea and method for the study of bionic vision system. The information processing mechanism is analyzed systematically, and a new design method of human eye-like optical system and visual attention modeling method are proposed. A solid-liquid mixed multi-layer adjustable lens, a human eye zoom optical imaging system and a bionic adjustable intraocular lens based on polymer materials are developed, and a vision based on two-channel and feature fusion is established. The main contents are as follows: In the first chapter, the research background, purpose and significance of this subject are expounded, and the research contents and general situation of human-like vision technology are introduced, focusing on zoom optics. Systems, intraocular lenses and visual attention models at home and abroad are described, and the main problems in the research of human-like optical system and visual attention mechanism are analyzed. The main research contents of this subject are given. Chapter 2, the key problems in the design and fabrication of adjustable optical lenses are studied. The structure and principle of a new type of solid-liquid mixed multi-layer adjustable lens based on polymer materials are studied. The fabrication process and adjusting process are studied deeply. Firstly, the physiological characteristics and optical model of human eye are introduced and analyzed. According to the characteristics of polymer elastic materials, the structure of the solid-liquid mixed multi-layer adjustable lens is proposed. Then, the constitutive relation of polymer material is analyzed, and the fabrication method and technological process of the adjustable lens are proposed. Finally, the experimental platform of the adjustable lens is built to test the deformation characteristics, imaging effect and focusing process of the adjustable lens, and the nonlinear variation curve of the load-curvature radius-focal length of the adjustable lens is obtained. In the third chapter, according to the optical structure and focusing characteristics of the human eye, the realization principle and development method of the optical imaging system of the human eye are proposed. Firstly, the overall structure and focusing scheme of the optical imaging system of the human eye are designed, and the optical imaging system based on the bionic zoom lens is proposed. Secondly, according to the structure characteristics of the system, the prototype prototype is designed and fabricated. Finally, aiming at the problem of focusing control of the human eye optical imaging system, the focal length control platform of the human eye optical imaging system is designed to realize the focusing range, imaging effect and optical characteristics of the imaging system. The imaging characteristics and focal length adjustment rules of the human-like optical system are obtained by experimental testing and simulation analysis. In the fourth chapter, the polymer adjustable lens is used in the zoom imaging system, and a zoom imaging system based on the polymer adjustable lens is proposed. The structure characteristics and adjustment mechanism of the system are studied. Finally, the zoom effect, imaging quality and optical characteristics of the prototype are tested, and the characteristics and adjustment of displacement load-focal length-zoom are obtained by simulation and analysis. In the fifth chapter, aiming at the deterioration of human visual accommodation ability, the structure principle and fabrication technology of bionic adjustable intraocular lens are proposed. Firstly, the structural characteristics and deformation mechanism of human lens are studied, and the optical model of lens is analyzed. Then, according to the characteristics and application requirements of human lens, the bionic adjustable artificial lens is proposed. Finally, a bionic adjustable intraocular lens testing platform is built to test and analyze its deformation characteristics, adjusting ability, imaging effect, surface roughness and so on. Chapter 6 analyzes the visual attention process and color antagonism mechanism of the human eye. Based on the multi-channel characteristics and neurobiological mechanism of human visual perception process, a visual attention modeling method based on two-channel and feature fusion is proposed. The pre-attention pathway is established by using multi-scale contrast and position features, and the post-attention pathway is established by using Gaussian pyramid and multi-feature fusion. The total saliency is generated by weighted integration mechanism. The basic principle of the algorithm, saliency measurement and feature fusion method are studied, and the processing results of the traditional visual attention model are compared. The validity of the model is verified and analyzed by experiments. Chapter 7 summarizes the whole paper, expounds the main research conclusions and innovations of this topic, and discusses the effectiveness of the model. The future research work is prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TH74
【相似文獻】
相關(guān)期刊論文 前10條
1 袁益謙,王淑巖,于崇真;醫(yī)用x光電視光學(xué)系統(tǒng)研制[J];光子學(xué)報;1992年02期
2 ;光學(xué)系統(tǒng)及設(shè)計[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1994年04期
3 ;光學(xué)系統(tǒng)測試及設(shè)備[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1994年02期
4 田鐵印;典型光學(xué)系統(tǒng)總體研究及結(jié)構(gòu)分析[J];光學(xué)精密工程;1994年04期
5 ;光學(xué)系統(tǒng)、成像與分析[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2000年03期
6 張寶林,朱莉;紫外線熒光復(fù)現(xiàn)光學(xué)系統(tǒng)的研究[J];長春大學(xué)學(xué)報;2000年05期
7 吳福田;一例典型紅外光學(xué)系統(tǒng)的計算分析[J];大學(xué)物理;2000年05期
8 ;光學(xué)系統(tǒng)、成像與分析[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2001年03期
9 ;光學(xué)系統(tǒng)、成像與分析[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2001年04期
10 ;光學(xué)系統(tǒng)、成像與分析[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2002年01期
相關(guān)會議論文 前10條
1 魏君成;王成;張童;;空間高級光學(xué)系統(tǒng)環(huán)境試驗概述[A];第十一屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2006年
2 陳曉麗;楊秉新;;實現(xiàn)甚高分辨率空間遙感器的可展開光學(xué)系統(tǒng)[A];中國空間科學(xué)學(xué)會空間探測專業(yè)委員會第十七次學(xué)術(shù)會議論文集[C];2004年
3 向陽;白聞喜;姜會林;胡家升;;目視硬性內(nèi)窺鏡光學(xué)系統(tǒng)初始結(jié)構(gòu)設(shè)計[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
4 吳亦農(nóng);黃志光;馮旗;;空間低溫光學(xué)系統(tǒng)研究進展[A];2007年全國第十六屆十三省(市)光學(xué)學(xué)術(shù)會議論文集[C];2007年
5 李劍白;李小蕓;齊豪;陳常彥;;光學(xué)系統(tǒng)成像質(zhì)量評價基本指標(biāo)體系及其選用[A];第十三屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2010年
6 付躍剛;王春艷;王志堅;;穩(wěn)像光學(xué)系統(tǒng)穩(wěn)像精度測試原理方案探討[A];第九屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2001年
7 唐敏學(xué);沈為民;;激光全息技術(shù)校正口徑500mm光學(xué)系統(tǒng)的光學(xué)誤差[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
8 范清春;劉海波;宿德志;譚吉春;;光學(xué)系統(tǒng)無熱設(shè)計及在星敏感器中的應(yīng)用[A];2009年先進光學(xué)技術(shù)及其應(yīng)用研討會論文集(上冊)[C];2009年
9 葉露;沈湘衡;;多譜段、多光軸精密儀器光學(xué)系統(tǒng)光軸平行性的檢測方法[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
10 周文超;彭勇;徐宏來;;大口徑光學(xué)系統(tǒng)綜合像差外場檢測的方法[A];高精度幾何量光電測量與校準(zhǔn)技術(shù)研討會論文集[C];2008年
相關(guān)重要報紙文章 前3條
1 ;聯(lián)想 引入光學(xué)系統(tǒng)差異化[N];中國計算機報;2004年
2 劉春林;聯(lián)想以品質(zhì)注解品牌內(nèi)涵[N];中國企業(yè)報;2004年
3 邢廣;10G以太網(wǎng)的物理接口選擇[N];網(wǎng)絡(luò)世界;2000年
相關(guān)博士學(xué)位論文 前10條
1 閆阿奇;大視場三線陣立體航測相機光學(xué)系統(tǒng)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機械研究所);2015年
2 宋席發(fā);光機熱一體化研究及成像分析[D];北京理工大學(xué);2015年
3 劉軍;自由曲面在成像光學(xué)系統(tǒng)中的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2016年
4 虞林瑤;大掃描視場共形頭罩導(dǎo)引頭光學(xué)系統(tǒng)像差校正技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2016年
5 梁丹;仿人眼光學(xué)系統(tǒng)與視覺注意機理研究[D];浙江大學(xué);2017年
6 米鳳文;衍/折紅外混和光學(xué)系統(tǒng)及其測試技術(shù)研究[D];浙江大學(xué);2001年
7 楊曉飛;三反射鏡光學(xué)系統(tǒng)的計算機輔助裝調(diào)技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2005年
8 呂博;新型空間飛行器交會對接光學(xué)系統(tǒng)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2015年
9 吳泉英;稀疏孔徑光學(xué)系統(tǒng)成像研究[D];蘇州大學(xué);2006年
10 常虹;透射式紅外系統(tǒng)熱光學(xué)穩(wěn)定性關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 陳輝;靈巧槍彈探測系統(tǒng)設(shè)計與分析[D];南京理工大學(xué);2015年
2 曹杏;光學(xué)系統(tǒng)的孔徑遮欄比對偏振光束傳輸特性的影響[D];西安工業(yè)大學(xué);2015年
3 楊國鋒;光學(xué)系統(tǒng)中心偏誤差分析方法研究[D];西安工業(yè)大學(xué);2015年
4 劉剛;激光與可見光、紅外三光軸瞄準(zhǔn)偏差測試技術(shù)研究[D];西安工業(yè)大學(xué);2015年
5 陳靜;非均勻污染對卡塞格倫光學(xué)系統(tǒng)的影響研究[D];哈爾濱工業(yè)大學(xué);2015年
6 劉盛典;非均勻溫度變化對卡塞格倫式光學(xué)系統(tǒng)的影響分析[D];哈爾濱工業(yè)大學(xué);2015年
7 陶曾;高分辨率中長焦光學(xué)系統(tǒng)裝校檢測平臺研究設(shè)計[D];福建師范大學(xué);2015年
8 陳麗娜;光纖熔接機的高清晰雙攝像頭視頻顯微系統(tǒng)的研制[D];福建師范大學(xué);2015年
9 黃焓;用于光場成像的光學(xué)系統(tǒng)設(shè)計方法研究[D];浙江大學(xué);2015年
10 石濮瑞;無運動部件反射式變焦光學(xué)系統(tǒng)研究[D];北京理工大學(xué);2015年
,本文編號:2230465
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2230465.html