鈦基體增強(qiáng)摻硼金剛石電極電催化過程動力學(xué)研究
[Abstract]:Organic pollutants in water environment are directly related to human health and have a vital relationship with social development. It has become an urgent requirement for water environmental protection to remove the difficult degradation of organic pollutants in water bodies. The electrocatalytic oxidation technology produces strong oxidizing active substances from the electrode surface electrochemistry as the direct or indirect oxygen. Organic compounds are widely used by environmentalists in the field of organic matter removal. Boron doped diamond (BDD) electrode is considered as the most ideal and efficient electrode material in the field of electrocatalytic oxidation. The mechanism and kinetics enhancement mechanism of the specific organic electrocatalytic oxidation process need further study. This paper uses BDD electrode to electrocatalysis organic pollution. On the basis of the dye, focusing on the construction of high efficiency BDD electrode and the mineralization process of organic pollutants, the mechanism of electrocatalytic oxidation of organic pollutants by BDD electrode, the relationship between the degradation process and the titanium matrix structure and electrocatalysis are explored. At the same time, the electro catalytic mechanism and the kinetic process of the electrode / solution interface are designed to enhance the electrical stimulation. The concrete main research results are as follows: (1) based on the purpose of improving the electrocatalytic activity of BDD electrode, a three-dimensional porous titanium based boron doped diamond (3D-Ti/BDD) film was prepared on porous titanium substrate by hot wire chemical vapor deposition. The SEM, XRD and Raman tests showed that the porous Ti/BDD film was preserved. On the premise of maintaining the high oxygen evolution potential of the BDD electrode, the matrix structure from the change of two-dimensional to porous titanium makes the thin film three-dimensional porous structure, increases the surface area of the BDD film electrode, and the effective electrochemical area of the porous titanium /BDD electrode is 2.62 from the two-dimensional BDD electrode, on the premise of maintaining the high oxygen evolution potential of the BDD electrode. Cm2 cm-2 increases to 8.37 cm2cm-2; cyclic voltammetry and electrochemical impedance tests indicate that porous titanium BDD has higher electrocatalytic activity and faster charge transfer rate for potassium ferricyanide redox, and the operation parameters of the charge transfer resistance from 128.3 Omega cm2 to 31.3 Omega cm2. and the BDD film deposition process are also important. The surface morphology and quality of BDD grains are directly affected by the influence of carbon source concentration, boron doping concentration and reactor pressure on the nucleation and growth rate of the diamond particles in the deposition process. The controllable preparation of micrometer and nanoscale porous BDD films can be achieved through the control of operating parameters. (2) the degradation of anti-inflammatory drugs on the three-dimensional BDD electrode Study of process and dynamics. Anti inflammatory drugs have become a new organic pollutant in the current water environment. The degradation process and kinetics of paracetamol on the BDD electrode are studied. Paracetamol appears obvious oxidation peak near the 0.90v of cyclic voltammetry curve. It is proved that paracetamol is on the BDD electrode. There is an electron transfer reaction in the electrocatalysis process, and the response current at the corresponding potential has a good linear relationship with the concentration of organic matter. The degradation process of organic matter under different current density shows that the current increase in the electrocatalytic process of organic matter increases with the increase of current density, accelerating the overall mineralization of acetaminophen. However, the high current density also aggravates the oxidation side reaction of the electrode surface, resulting in the gradual decrease of the current efficiency. The degradation kinetics of acetaminophen on the BDD electrode conforms to the quasi first order reaction kinetics, and the apparent rate constant on the two-dimensional and porous BDD electrode has a larger comparison table for the 0.208,0.344h-1. porous BDD electrode, respectively. The area provides more reactive sites for the direct electron transfer of paracetamol on the BDD electrode, promoting the electroformation of the strongly oxidized active hydroxyl radical in the process of indirect electrocatalytic oxidation acetaminophen, and eventually showing a faster electrochemical reaction kinetic rate. The mechanism and degradation pathway on the BDD electrode are proposed. (3) the electrocatalytic mineralization of hydroquinone on different electrode materials shows that the electrocatalytic oxidation activity of the electrode has an important relation with the electrode oxygen evolution potential and the surface generation of hydroxyl radical. The substituent phenols of different substituent groups are in the BD The electrochemical degradation experiments on the D electrode show that the activity of the electrocatalytic reaction is restricted by the electronic effect of the substituent functional group itself. The substituent is separated from the benzene ring in the mineralization process and becomes the quick step of the whole electrocatalytic reaction process, and the electrocatalytic reaction rate is approximately linear with the Hammett constant of the substituent group, which has an approximate linear relationship with the electrocatalytic oxygen (.Bdd). The mechanism mainly produces the strong oxidation active hydroxyl radical as the medium, and the existence of porous structure of porous BDD electrode makes the amount of hydroxyl radical produced on the surface of the porous BDD electrode is about 2.7 times that of the two-dimensional electrode, and the step current of the porous BDD electrode is 2 times that of the two dimensional electrode for different kinds of organic matter, showing a higher indirect electrical stimulation. The degradation of different kinds of organic compounds by electrocatalytic oxidation shows that the porous BDD electrode can achieve faster removal rate and current efficiency. However, the irregular pore structure inside the porous electrode leads to the difficulty in the mass transfer process of organic matter in the porous electrode, which is a limiting step for the whole degradation process and causes much more. The utilization rate of hydroxyl radical of hole electrode is only 50~60%, which weakens the advantage of high catalytic oxidation ability of porous BDD electrode. (4) to further design the three dimension network BDD electrode for enhancing the mass transfer process of electrode / solution interface for the problem of the internal mass transfer in the porous electrode hole. A three-dimensional network BDD electrode with surface microstructures is prepared. The electrode microstructural surface provides more active sites for the electrocatalytic oxidation reaction, and the effective electrochemical surface area is 1.6 times as high as that of the two-dimensional BDD electrode. Due to the enhancement of surface area and the natural network structure, the three-dimensional network BDD electrode redox to the solution of the solution of the potassium ferricyanide Higher electrocatalytic activity and lower mass transfer resistance were shown in the related electrochemical tests, and the enhancement of surface hydrophobicity made the hydroxyl radicals produced on the surface of the electrode more easily detached from the surface of the electrode to enter the bulk solution and the organic matter to be electrochemical oxidation, and increased the efficiency of the hydroxyl radical. The mass transfer process of organics on the electrode surface makes the organic matter have a faster mass transfer coefficient on the surface of the electrode and weakens the restriction of the mass transfer process control. The above factors make the three-dimensional network BDD electrode show a faster removal rate and dynamic process in the mineralizing experiment of different kinds of organic matter. In addition, the three-dimensional network is used. The complex titanium matrix can also be extended to other network titanium and active coatings for water treatment. The obtained network PbO2 electrode shows excellent electrocatalytic oxidation performance compared to the BDD electrode, and the applicability and efficiency of this kind of network electrode have been verified.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O646.5;O643.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;散熱新方向:銅-金剛石復(fù)合材料[J];超硬材料工程;2009年02期
2 梁中翥;梁靜秋;鄭娜;賈曉鵬;李桂菊;;摻氮金剛石的光學(xué)吸收與氮雜質(zhì)含量的分析研究[J];物理學(xué)報;2009年11期
3 宋月清;夏揚(yáng);謝元鋒;林晨光;郭志猛;曲選輝;;金剛石熱管理材料的研究進(jìn)展[J];超硬材料工程;2010年01期
4 李蒙順;;金剛石的光學(xué)分恱[J];重型機(jī)械;1963年04期
5 王至炎;金剛石的光學(xué)選礦[J];建筑材料工業(yè);1963年05期
6 李繼業(yè);;金剛石浮選的理論分析[J];非金屬礦;1980年01期
7 陳昭威;提高燒結(jié)多晶金剛石質(zhì)量的途徑[J];人工晶體;1982年01期
8 ;電解回收金剛石的小結(jié)[J];青海地質(zhì);1978年02期
9 陳小安,王序進(jìn);淺談金剛石修整工具及其制造方法[J];磨料磨具與磨削;1986年06期
10 林增棟;金剛石表面的金屬化[J];磨料磨具與磨削;1987年02期
相關(guān)會議論文 前10條
1 劉志杰;張衛(wèi);萬永中;王季陶;;氧原子在化學(xué)氣相淀積金剛石過程中的作用[A];第三屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1998年
2 廖道達(dá);陸德強(qiáng);劉文燕;邱君苑;;金剛石錦上添花[A];2005年中國機(jī)械工程學(xué)會年會第11屆全國特種加工學(xué)術(shù)會議專輯[C];2005年
3 鄭云龍;楊志軍;曾祥清;艾群;彭明生;;金剛石典型表面形貌的形成與環(huán)境意義[A];2012年全國礦物科學(xué)與工程學(xué)術(shù)研討會論文集[C];2012年
4 王超;揭曉華;徐江;陶洪亮;魏菊;;雙陰極等離子濺射金剛石顯微結(jié)構(gòu)研究[A];2013廣東材料發(fā)展論壇——戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展與新材料科技創(chuàng)新研討會論文摘要集[C];2013年
5 郭宗山;;金剛石的成因與找礦[A];中國地質(zhì)科學(xué)院礦床地質(zhì)研究所文集(19)[C];1987年
6 喬培新;龍偉民;鐘素娟;李勝利;;預(yù)合金粉末與金剛石的擴(kuò)散連接[A];第十一次全國焊接會議論文集(第1冊)[C];2005年
7 廖道達(dá);陸德強(qiáng);劉文燕;邱君苑;;金剛石錦上添花[A];2005年中國機(jī)械工程學(xué)會年會論文集第11屆全國特種加工學(xué)術(shù)會議專輯[C];2005年
8 劉鵬;謝水生;李木森;郝兆印;程開甲;;新型碳源高溫高壓合成及外延金剛石[A];中國有色金屬學(xué)會合金加工學(xué)術(shù)委員會2008學(xué)術(shù)年會論文集[C];2008年
9 楊志軍;彭明生;蒙宇飛;苑執(zhí)中;張恩;;鐵基合金-氫預(yù)處理石墨系高溫高壓合成金剛石的研究及其意義[A];中國礦物巖石地球化學(xué)學(xué)會第十屆學(xué)術(shù)年會論文集[C];2005年
10 廖源;沈維康;王冠中;余慶選;馬玉蓉;方容川;;摻氮?dú)夥障翪VD金剛石的場致發(fā)射特性研究[A];第九屆全國發(fā)光學(xué)術(shù)會議摘要集[C];2001年
相關(guān)博士學(xué)位論文 前10條
1 王珊珊;金剛石薄膜電極的制備及其在鋁電解中的應(yīng)用研究[D];大連理工大學(xué);2014年
2 趙陽;摻硼金剛石電極對廢水毒性控制和污染物檢測性能評價[D];大連理工大學(xué);2015年
3 鄒萊;黑色金屬金剛石切削刀具磨損及其抑制的研究[D];哈爾濱工業(yè)大學(xué);2015年
4 許蓬子;金剛石材料逆向磨損去除加工的研究[D];吉林大學(xué);2016年
5 劉巖;基干金剛石色心的單光子產(chǎn)生及其熒光動力學(xué)研究[D];華東師范大學(xué);2016年
6 崔巍;熔滲法制備金剛石/銅復(fù)合材料及其性能[D];北京科技大學(xué);2016年
7 王俊峰;金剛石NV色心的制備、相干性與溫度探測研究[D];中國科學(xué)技術(shù)大學(xué);2016年
8 胡強(qiáng);生長型金剛石聚晶的高溫高壓合成及其機(jī)理研究[D];吉林大學(xué);2016年
9 李浩;硼摻雜金剛石薄膜電極的制備及其在密閉空間廢水處理回用中的應(yīng)用[D];浙江大學(xué);2016年
10 賈乾忠;聚晶金剛石刀具關(guān)鍵制作工藝及機(jī)理研究[D];大連理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 袁婷;華北地臺和揚(yáng)子地臺金剛石生長過程的差異性及意義[D];中國地質(zhì)大學(xué);2009年
2 劉向紅;n型摻雜金剛石的第一性原理研究[D];山東大學(xué);2011年
3 衛(wèi)陳龍;金剛石表面金屬化及金剛石/銅復(fù)合材料微波燒結(jié)工藝研究[D];昆明理工大學(xué);2015年
4 吳東;高精度金剛石玻氏壓頭的設(shè)計方法及其機(jī)械研磨技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
5 李姝賢;金剛石表面處理對金剛石/鋁復(fù)合材料組織性能的影響[D];北京有色金屬研究總院;2015年
6 林佳志;摩擦化學(xué)拋光單晶金剛石的工藝研究[D];大連理工大學(xué);2015年
7 龍濤;熱管理用金剛石/銅復(fù)合材料的界面構(gòu)建及其組織與熱導(dǎo)率研究[D];南昌航空大學(xué);2014年
8 王松瑞;磁場作用對化學(xué)復(fù)合鍍Ni-P-金剛石影響機(jī)理研究[D];青島科技大學(xué);2015年
9 漆書桂;多層釬焊金剛石鉆頭的實驗研究[D];中國地質(zhì)大學(xué)(北京);2012年
10 周爽;釬焊金剛石鉆頭微觀組織分析與鉆進(jìn)溫度場仿真[D];中國地質(zhì)大學(xué)(北京);2013年
,本文編號:2149766
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2149766.html