L-谷氨酸對(duì)果實(shí)抗性的誘導(dǎo)作用及其相關(guān)機(jī)理研究
[Abstract]:In the practice of postharvest storage and transportation of fruit, fruit decay caused by fungal diseases will cause great economic loss. Although chemical fungicides are still the main control methods for controlling postharvest diseases, under the guidance of the concept of health and environmental protection, the types and limits of their use and scope are more stringent and limited. The inherent resistance mechanism of the fruit has become a new concept and new means for the prevention and control of postharvest diseases of the fruit. As one of the most important amino acids in the organism, L- glutamic acid and its sodium salt are widely used in various fields of real life. It has the characteristics of safe and environmental protection, low price, easy access and simple use of.L- glutamic acid. Plant metabolism occupies a very important position, not only to participate in the synthesis of a variety of metabolic substances related to stress resistance, but also plays an important role in the response to abiotic stress. However, there are few reports on its role in the plant disease defense response. This paper uses L- glutamic acid as a exogenous inducer. The prevention and control effect on postharvest diseases of fruit was discussed, and the resistance mechanism of L- glutamic acid to fruit was studied through multiple levels and angles of genes, proteins and substances. The results not only provide a theoretical basis for the development of a new type of fresh preservative based on L- glutamic acid, but also provide a new perspective and strategy for the study of plant resistance. The main results are as follows: (1) L- glutamic acid can resist or delay the development of postharvest diseases by inducing the resistance of the fruit (pear, tomato, citrus) itself, and the inhibition effect and induction time (above 24h), the treatment concentration (100mg U1) and other factors closely related to.L- glutamic acid, whether by pre harvest spraying or after postharvest treatment It can effectively improve the resistance of fruit to Postharvest Pathogens, and has broad application prospects in the field of fruit preservation and preservation. (2) L- glutamic acid as a precursor of gamma aminobutyric acid (GABA) activates the expression of key genes related to GABA synthesis and metabolism in the GABA branch of tomato fruit, and the exogenous GABA treatment can effectively resist tomatoes. The infection of the fruit saprophytic pathogen Alternariaalternate, its mechanism and activation of the.GABA branch related to the activation of the GABA branch in the fruit of the fruit may be related to the strengthening of the three carboxylic acid (TCA) cycle path to provide more energy for the defense response; on the other hand, it may prevent the accumulation of active oxygen and reduce cell death. The induction mechanism of L- glutamic acid on tomato fruit resistance may be closely related to the GABA branch. (3) after L- glutamic acid treatment, the main nitrogen metabolism pathway of the respiratory climacteric fruit tomato is activated by the GS on the cycle of glutamine synthetase / glutamic synthetase (GS/ GOGAT). At the same time, it is associated with carbon metabolism. The genes encoding hexokinase and pyruvate kinase in the glycolysis pathway and the malate dehydrogenase and succinic dehydrogenase in the TCA cycle are strongly induced. That is to say, the resistance mechanism of L- glutamic acid to A.alternata may be related to the activation of carbon and nitrogen metabolism pathway. (4) the fruit of tomato is treated with Salicylic acid after L- glutamic acid treatment. Genes related to the pathway of signaling, such as PAL, NPR1, TGA1, TGA2, WRKY70 and PR genes, are significantly up-regulated, and the two key ethylene synthetase genes on the ethylene synthesis pathway, ACS, ACO and ethylene receptor ETR3, are strongly suppressed in the transcriptional expression of ETR4; the LOX1 on the jasmonic acid synthesis pathway is downregulated and its signal turns Jasmonate receptor COI1 on the guide path, the transcriptional level of the transcriptional factor MYC2 and the jasmonic acid induced protease inhibitor PI- II, while the negative regulatory transcription factor JAZ1 has a certain upward trend. It is known that the resistance mechanism of L- glutamic acid to the Postharvest black spot of tomato fruit may be dependent on the synthesis and letter of salicylic acid. There was a certain inhibitory effect of glutamic acid on the synthesis of ethylene / jasmonic acid and signal pathway. (5) the results of the relative and absolute quantitative (iTRAQ) test of the same heavy isotopes showed that 97 proteins in the tomato fruit treated with glutamic acid were significantly expressed in comparison with the control group, and the 42 proteins were significantly down expressed, and these differences were different. The protein was significantly enriched in the interaction of plant and pathogenic bacteria, synthesis of phenylpropane, energy metabolism (oxidation phosphorylation and polysaccharide decomposition pathway), fatty acid metabolism and other metabolic pathways closely related to plant resistance. (6) the results of the changes in the material content of tomato fruit by GC / MS (GC-MS) were analyzed. The results showed that L- glutamic acid may activate the energy metabolism of fruit, amino acid metabolism and the pathway of salicylic acid signal, and have certain inhibitory effects on the synthesis pathway of ethylene / jasmonic acid. (7) the results of the transcription of Citrus transcriptional expression of non climacteric fruit show that L- glutamic acid under the condition of unplanted pathogen Penicillium digitatum There were 623 up-regulated genes and 647 down-regulated genes in the citrus fruits compared with the control group. Under the condition of inoculation, the L- glutamic acid treatment group had 234 up-regulated genes and 193 down-regulation genes. These genes involved carbon metabolism, amino acid metabolism, plant irritable Sudache and secondary metabolism, which were closely related to the fruit resistance. In summary, L- glutamic acid can effectively resist fruit disease by inducing fruit resistance. The mechanism may be related to the activation of the GABA branch, carbon and nitrogen metabolism and salicylic acid pathway, and the inhibition of the ethylene / jasmonate pathway.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TS255.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李京;惠伯棣;裴凌鵬;;番茄果實(shí)在成熟過程中類胡蘿卜素含量的變化[J];中國(guó)食品學(xué)報(bào);2006年02期
2 盧丞文;潘曉琪;田慧琴;羅云波;朱本忠;;番茄果實(shí)中蛋白質(zhì)的提取和雙向電泳條件的優(yōu)化[J];食品科技;2010年10期
3 劉零怡;于萌萌;鄭楊;生吉萍;申琳;;采后一氧化氮處理調(diào)控番茄果實(shí)茉莉酸類物質(zhì)合成并提高灰霉病抗性[J];食品科學(xué);2010年22期
4 秦公偉;曹小勇;陳德經(jīng);殷荷蘭;黨文娟;;多個(gè)番茄果實(shí)樣品脂肪酸含量及組成比較分析[J];食品工業(yè)科技;2012年15期
5 李翠丹;申琳;生吉萍;;一氧化氮參與水楊酸誘導(dǎo)的采后番茄果實(shí)抗病性反應(yīng)[J];食品科學(xué);2013年08期
6 李軼,張振;沼液對(duì)番茄果實(shí)品質(zhì)的影響[J];中國(guó)沼氣;2001年01期
7 潘曉琪;朱本忠;傅達(dá)奇;羅云波;;紅熟期番茄果實(shí)根霉果腐病與相關(guān)酶活性變化的研究[J];食品科技;2011年03期
8 任邦來(lái);胡玉琴;;殼聚糖處理番茄的保鮮效果研究[J];中國(guó)食物與營(yíng)養(yǎng);2012年05期
9 于萌萌;申琳;生吉萍;;茉莉酸甲酯誘導(dǎo)采后番茄果實(shí)抗病的作用[J];食品科學(xué);2012年09期
10 魏寶東,姜炳義,馮輝;番茄果實(shí)貨架期硬度變化及其影響因素的研究[J];食品科學(xué);2005年03期
相關(guān)會(huì)議論文 前10條
1 董彩霞;周健民;范曉暉;王火焰;段增強(qiáng);;花期減少施鈣量對(duì)不同鈣效率番茄果實(shí)鈣形態(tài)和含量的影響[A];第八屆全國(guó)青年土壤暨第三屆全國(guó)青年植物營(yíng)養(yǎng)與肥料科學(xué)工作者學(xué)術(shù)討論會(huì)論文集[C];2002年
2 王艷;張其安;方凌;田紅梅;嚴(yán)從生;江海坤;王明霞;;不同顏色番茄果實(shí)轉(zhuǎn)色期相關(guān)酶活性的研究[A];中國(guó)園藝學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要集[C];2013年
3 王楠;崔娜;張佳楠;范海延;李天來(lái);;茉莉酸信號(hào)對(duì)不同發(fā)育時(shí)期番茄果實(shí)中糖含量的影響[A];中國(guó)園藝學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要集[C];2013年
4 石正強(qiáng);沈火林;;營(yíng)養(yǎng)液電導(dǎo)度的增加和不同栽培基質(zhì)對(duì)溫室番茄果實(shí)中抗氧化物質(zhì)含量的影響[A];中國(guó)園藝學(xué)會(huì)第五屆青年學(xué)術(shù)討論會(huì)論文集[C];2002年
5 朱為民;李鋒;;番茄果實(shí)裂性與耐壓性[A];中國(guó)園藝學(xué)會(huì)首屆青年學(xué)術(shù)討論會(huì)論文集[C];1994年
6 陳勁憬;高麗紅;;番茄采收時(shí)期對(duì)其營(yíng)養(yǎng)品質(zhì)及貯藏品質(zhì)的影響[A];中國(guó)園藝學(xué)會(huì)第七屆青年學(xué)術(shù)討論會(huì)論文集[C];2006年
7 王昕;李建橋;任露泉;;番茄果實(shí)采收后的硬度測(cè)定及其變化規(guī)律[A];農(nóng)業(yè)機(jī)械化與全面建設(shè)小康社會(huì)——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)成立40周年慶典暨2003年學(xué)術(shù)年會(huì)論文集[C];2003年
8 王昕;李建橋;任露泉;;番茄果實(shí)采收后的硬度測(cè)定及其變化規(guī)律[A];中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)成立40周年慶典暨2003年學(xué)術(shù)年會(huì)論文集[C];2003年
9 楊寶軍;郭淑華;王曉武;杜永臣;;Brazzein甜蛋白基因克隆及其番茄果實(shí)特異表達(dá)載體構(gòu)建[A];蔬菜分子育種研討會(huì)論文集[C];2004年
10 韓峰;沈世華;;番茄果實(shí)成熟過程質(zhì)體分化及hp-1突變對(duì)該分化過程的影響的蛋白質(zhì)組學(xué)研究[A];第三屆全國(guó)植物蛋白質(zhì)組學(xué)大會(huì)摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前8條
1 三河市農(nóng)業(yè)技術(shù)推廣總站 劉艷平;番茄果實(shí)異常的原因及防治[N];河北科技報(bào);2012年
2 玉田縣農(nóng)牧局 蘇亞東;為何番茄著色不良[N];河北科技報(bào);2014年
3 唐山市玉田縣農(nóng)牧局 蘇亞東;番茄著色不良的解決措施[N];河北農(nóng)民報(bào);2014年
4 田玉龍邋盛長(zhǎng)存;番茄紅了,農(nóng)民笑了[N];張掖日?qǐng)?bào);2008年
5 田玉龍邋盛長(zhǎng)存;番茄紅了富裕高臺(tái)鄉(xiāng)親[N];農(nóng)民日?qǐng)?bào);2008年
6 辛集市植保站 陳書喬;怎樣預(yù)防番茄茶色果和綠肩果[N];河北科技報(bào);2010年
7 饒陽(yáng)縣農(nóng)牧局農(nóng)廣校 魏俊轉(zhuǎn);選擇番茄品種有說(shuō)道[N];河北科技報(bào);2013年
8 石家莊辛集市植保站 陳書喬;夏季露地番茄謹(jǐn)防裂果[N];河北農(nóng)民報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 孫倩倩;外源褪黑素對(duì)番茄果實(shí)采后成熟的影響[D];中國(guó)農(nóng)業(yè)大學(xué);2016年
2 于洋;外源GA_3和ABA對(duì)番茄果實(shí)主要色素形成的影響及生理機(jī)制研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
3 李珊;番茄果實(shí)中重要轉(zhuǎn)錄因子MADS-RIN的功能分析[D];中國(guó)農(nóng)業(yè)大學(xué);2017年
4 楊佳麗;L-谷氨酸對(duì)果實(shí)抗性的誘導(dǎo)作用及其相關(guān)機(jī)理研究[D];浙江大學(xué);2017年
5 李家寅;生長(zhǎng)素及生長(zhǎng)素-乙烯互作調(diào)控番茄果實(shí)成熟的效應(yīng)與機(jī)理[D];浙江大學(xué);2017年
6 姜峰;拮抗酵母誘導(dǎo)番茄果實(shí)抗性基因的分離與功能鑒定[D];浙江大學(xué);2008年
7 張紅星;番茄中乙烯信號(hào)轉(zhuǎn)錄因子LeERF1和LeERF2調(diào)控機(jī)制研究[D];中國(guó)農(nóng)業(yè)大學(xué);2005年
8 寇曉虹;番茄多聚半乳糖醛酸酶(PG)反義基因表達(dá)及相關(guān)功能研究[D];中國(guó)農(nóng)業(yè)大學(xué);2003年
9 汪淑芬;FRUITFULL調(diào)控番茄果實(shí)發(fā)育與成熟的機(jī)理研究[D];華中農(nóng)業(yè)大學(xué);2014年
10 劉麗紅;茉莉酸和油菜素甾醇調(diào)控番茄果實(shí)類胡蘿卜素積累的機(jī)理研究[D];浙江大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 李成;番茄果實(shí)的基礎(chǔ)物理特征及力學(xué)性質(zhì)的研究與應(yīng)用探討[D];東北農(nóng)業(yè)大學(xué);2005年
2 王紹會(huì);利用Solanum galapagense重組自交系對(duì)番茄果實(shí)重量、形狀和可溶性固形物含量的QTL定位分析[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年
3 王敏;不同體積限根對(duì)番茄生長(zhǎng)發(fā)育及品質(zhì)的影響[D];寧夏大學(xué);2015年
4 孔俊花;SlymiR156/7和SlCMT3對(duì)番茄果實(shí)成熟關(guān)鍵基因LeSPL-CNR轉(zhuǎn)錄調(diào)控機(jī)制的研究[D];杭州師范大學(xué);2015年
5 宋敏;番茄SlEIL對(duì)乙烯合成的轉(zhuǎn)錄調(diào)控[D];浙江大學(xué);2014年
6 李潔;外源NO和乙烯處理對(duì)番茄采后品質(zhì)及乙烯合成相關(guān)基因表達(dá)的影響[D];新疆農(nóng)業(yè)大學(xué);2015年
7 呂潔;LYC-B沉默對(duì)番茄果實(shí)揮發(fā)性物質(zhì)和品質(zhì)性狀的影響[D];西北農(nóng)林科技大學(xué);2016年
8 周楓;采收成熟度、1-MCP和乙烯處理對(duì)番茄果實(shí)冷害和貯藏效果的影響[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
9 朱珍;赤霉素調(diào)控采后番茄果實(shí)抗冷機(jī)制研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2016年
10 張敏慧;番茄果實(shí)大小的QTL定位[D];華中農(nóng)業(yè)大學(xué);2016年
,本文編號(hào):2133800
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2133800.html