EAST上低雜波驅(qū)動等離子體環(huán)向旋轉(zhuǎn)實驗研究
本文選題:托卡馬克 + 電荷交換復(fù)合光譜診斷 ; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:等離子體旋轉(zhuǎn)是提升等離子體比壓極限、抑制湍流輸運的有效方法。等離子體旋轉(zhuǎn)還可以抑制大尺度的磁流體不穩(wěn)定性,而旋轉(zhuǎn)速度剪切在抑制微觀不穩(wěn)定性和反常輸運中起到重要的作用。本論文工作參與并完成了 EAST上電荷交換復(fù)合光譜(Charge eXchange Recombination Spectroscopy,CXRS)診斷系統(tǒng)的搭建工作,包括系統(tǒng)安裝、標(biāo)定、調(diào)試優(yōu)化以及數(shù)據(jù)后處理工作;基于EAST實驗診斷和物理數(shù)據(jù)對EAST上低雜波驅(qū)動等離子體環(huán)向旋轉(zhuǎn)展開了實驗研究,為理解低雜波驅(qū)動等離子體旋轉(zhuǎn)的物理機制積累了豐富的實驗數(shù)據(jù)。本論文的主要內(nèi)容概括如下:在EAST托卡馬克裝置上協(xié)助發(fā)展了一套CXRS診斷系統(tǒng),用于等離子體旋轉(zhuǎn)速度和離子溫度測量,其觀測范圍覆蓋了完整的等離子體剖面(對應(yīng)大半徑R=1 500-2370mm),空間分辨達(dá)到5-30mm(芯部到邊界)時間分辨在30-50ms。在原有技術(shù)的基礎(chǔ)上發(fā)展了新的CXRS空間和波長標(biāo)定方法。對于測量觀測位置與觀測視線在托卡馬克中詳細(xì)的三維空間坐標(biāo)的空間視線標(biāo)定需求,發(fā)展了利用機械手臂進(jìn)行測量空間位置的方法,結(jié)合束發(fā)射光譜多普勒頻移的光譜測量方法進(jìn)行空間標(biāo)定,進(jìn)一步提升了空間位置標(biāo)定的精度。對波長標(biāo)定采用標(biāo)準(zhǔn)燈和激光結(jié)合測量的方法提高J了實驗運行期間波長標(biāo)定的準(zhǔn)確性和穩(wěn)定性;陔姾山粨Q診斷原理對SOS軟件的CX_Simu1ation模塊進(jìn)行升級,并分別模擬了有限束寬度、同向中性束左右兩條束線同時注入以及塞曼效應(yīng)對CXRS診斷測量的影響。模擬結(jié)果顯示在等離子體參數(shù)剖面分布變化比較平緩時有限束寬度效應(yīng)對CXRS測量的影響相對測量值是小量,而當(dāng)?shù)入x子體參數(shù)出現(xiàn)明顯的梯度時(例如存在內(nèi)部輸運壘時)有限束寬度效應(yīng)將對測量產(chǎn)生比較大的影響。兩條束線同時注入使得CXRS測量得到的溫度和速度都小于原始真實值,但是在芯部影響較小可以忽略,在邊界溫度和速度的測量誤差分別高達(dá)17%和25%。塞曼效應(yīng)對于等離子體旋轉(zhuǎn)速度測量沒有太大的影響,對溫度測量則有一定的影響,且影響從高場側(cè)到低場側(cè)逐漸變小。為了提高數(shù)據(jù)分析效率,編寫了包括CXRS系統(tǒng)信息,標(biāo)定結(jié)果,CCD數(shù)據(jù)采集等信息的CXSFIT接口程序,并應(yīng)用CXSFIT軟件處理CXRS實驗數(shù)據(jù)獲得EAST放電過程中離子溫度和旋轉(zhuǎn)速度的時空分布信息。針對射頻波驅(qū)動等離子體旋轉(zhuǎn)這一重要課題,對EAST上低雜波驅(qū)動等離子體旋轉(zhuǎn)展開了實驗研究,發(fā)現(xiàn)在目前EAST的運行區(qū)間內(nèi)低雜波驅(qū)動等離子體旋轉(zhuǎn)同電流方向變化,并且與初始等離子體旋轉(zhuǎn)方向無關(guān)。等離子體旋轉(zhuǎn)對低雜波的響應(yīng)速度與電流密度對低雜波的響應(yīng)速度相同慢于電子溫度的升高和內(nèi)能的增加,同時研究發(fā)現(xiàn)低雜波注入后旋轉(zhuǎn)速度上升的時間慢于低雜波撤出后旋轉(zhuǎn)速度下降的時間。為了研究不同參數(shù)對低雜波驅(qū)動旋轉(zhuǎn)的影響進(jìn)行了不同放電條件下的對比實驗。實驗結(jié)果顯示4.6 GHz低雜波相對2.45 GHz低雜波對等離子體旋轉(zhuǎn)速度的驅(qū)動效果更好的同時也具有更好的電子溫度加熱以及電流驅(qū)動效果。低雜波驅(qū)動旋轉(zhuǎn)速度的變化值與低雜波功率成正比,與等離子體電流和等離子體密度成負(fù)相關(guān)的關(guān)系。另外對低雜波注入等離子體后的等離子體旋轉(zhuǎn)速度剖面分布進(jìn)行了仔細(xì)分析。發(fā)現(xiàn)低雜波注入等離子體后,旋轉(zhuǎn)速度在整個剖面分布上并不同步變化,而是在低雜波功率沉積區(qū)域首先發(fā)生變化,而后變化傳遞到等離子體全剖面。對于一炮NBI背景等離子體下注入低雜波放電的研究中發(fā)現(xiàn)低雜波注入等離子體后旋轉(zhuǎn)速度的變化存在兩個階段:在低雜波注入等離子體后100ms內(nèi),旋轉(zhuǎn)速度總是先在低雜波功率沉積區(qū)域處向反電流方向變化。然后隨著低雜波的繼續(xù)持續(xù)注入在相同的位置處旋轉(zhuǎn)速度開始向同電流方向變化隨后變化傳遞到整個剖面。最后,根據(jù)觀測到的實驗現(xiàn)象定性的給出了一個簡單的低雜波驅(qū)動等離子體旋轉(zhuǎn)的物理模型:低雜波注入等離子體后,低雜波自身攜帶的動量迅速通過朗道阻尼傳遞給電子,隨后又通過電子與離子間的碰撞傳遞給離子,這是一個快過程并在低雜波注入后短時間內(nèi)驅(qū)動等離子體向反電流方向旋轉(zhuǎn)。低雜波注入等離子體后會在其沉積位置處產(chǎn)生一個局域的徑向電場,從而形成徑向流結(jié)合極向磁場產(chǎn)生的電磁力慢慢在環(huán)向產(chǎn)生一個同電流方向的驅(qū)動力,并隨著低雜波的持續(xù)注入而慢慢變大直到徑向電荷平衡。而在該力慢慢變大而超過由低雜波動量注入產(chǎn)生的力時,環(huán)向力綜合的效果變?yōu)轵?qū)動等離子體旋轉(zhuǎn)向同電流方向變化;上述兩種力均在低雜波沉積位置附近產(chǎn)生,最后通過動量輸運(擴散項和箍縮項)將局域的變化傳遞到整個等離子體剖面,使得等離子體旋轉(zhuǎn)在環(huán)向達(dá)到一個新的平衡。
[Abstract]:The plasma rotation is an effective method to increase the ratio of the plasma to the pressure limit and suppress the turbulent transport. The rotation of the plasma can also inhibit the large scale magnetohydrodynamic instability, and the rotational velocity shear plays an important role in inhibiting the micro instability and anomalous transport. The work of this paper has participated in and completed the charge exchange complex on EAST. The construction of the Charge eXchange Recombination Spectroscopy (CXRS) diagnostic system, including system installation, calibration, debug optimization and data post-processing; based on the experimental diagnosis and physical data of EAST, the experimental study of the low clutter driven plasma ring rotation on EAST is carried out to understand the low clutter driven plasma spin. The main contents of this paper are as follows: the main contents of this paper are as follows: a set of CXRS diagnostic systems was developed on the EAST Tokamak device to measure the rotational velocity of plasma and the measurement of ion temperature. The range of observation covers the complete plasma profile (corresponding to the large radius R=1 500-2370mm) and the spatial resolution. The time resolution of 5-30mm (core to boundary) has developed a new method of CXRS space and wavelength calibration on the basis of 30-50ms., which is based on the original technology. The method of measuring space position by measuring the observation position and the observation line of sight in the detailed three-dimensional space coordinates of the Tokamak is developed. The spectral measurement method of beam emission spectrum Doppler frequency shift is used to calibrate the space, and the accuracy of space location calibration is further improved. The accuracy and stability of wavelength calibration during J operation are improved by using standard light and laser combined measurement for wavelength calibration. Based on the principle of charge exchange diagnosis, the CX_Simu of SOS software The 1ation module is upgraded, and the finite beam width, the simultaneous injection of two beams with the same neutral beam and the effect of the Zeeman effect on the CXRS diagnosis are respectively simulated. The simulation results show that the effect of the finite beam width effect on the measurement of CXRS measurements is small when the profile of the plasma parameters is relatively slow. The effect of the limited beam width effect on the plasma parameters, such as the internal transport barrier, will have a larger effect on the measurement. The two beam line injection makes the temperature and velocity of the CXRS measurement less than the original true value, but the small influence on the core can be ignored and the measurement error at the boundary temperature and velocity is incorrect. The difference of the difference up to 17% and 25%. Zeeman effect has not much influence on the measurement of the velocity of plasma rotation. It has a certain influence on the temperature measurement, and the influence is gradually reduced from the high field side to the low field side. In order to improve the efficiency of data analysis, the CXSFIT interface program, including the information of the CXRS system, the calibration result, the CCD data collection and so on, is written. And using the CXSFIT software to process the CXRS experimental data to obtain the temporal and spatial distribution information of the ion temperature and the rotation speed in the EAST discharge process. In view of the important issue of the plasma rotation of the radio frequency wave driven plasma, the experimental study on the low clutter driven plasma rotation on the EAST is carried out. It is found that the low clutter drive in the current EAST operating range is in isolation. The rotation of the subbody changes in the direction of the current and has nothing to do with the rotation direction of the initial plasma. The response of the plasma rotation to the low clutter is the same as the response of the low clutter to the increase of the electron temperature and the increase of the internal energy. At the same time, it is found that the time of the rotation speed rising is slower than the low clutter after the low clutter is injected. In order to study the effect of different parameters on the rotation of low clutter driven by different parameters, the comparison experiment under different discharge conditions is carried out. The experimental results show that the driving effect of 4.6 GHz low clutter relative to 2.45 GHz low clutter is better than the electron temperature heating and electricity. The change of the rotational speed of the low clutter driven by the low clutter is proportional to the low clutter power, and the relationship between the plasma current and the plasma density is negatively correlated. In addition, the profile of the rotational velocity profile of the plasma after the low clutter injection is carefully analyzed. The rotation velocity is found after the low clutter injection plasma is injected. The variation of the whole profile is not synchronized, but is first changed in the low clutter power deposition region, and then transferred to the full section of the plasma. In the study of the low clutter injection under a NBI background plasma, there are two stages in the change of the rotational velocity after the low clutter injection plasma: in the low clutter injection. In 100ms, the velocity of rotation always changes to the direction of the reverse current at the low clutter power deposition region. Then with the continuous continuous injection of the low clutter at the same position, the rotation speed begins to change to the same current direction and then changes to the whole section. Finally, the observed experimental phenomena are qualitatively given. A simple physical model of low clutter driven plasma rotation: after low clutter injection plasma, the momentum of low clutter itself is transferred to electrons rapidly through Landau damping, and then passes through the collisions between electrons and ions to ions. This is a fast process and drives plasma in a short time after low clutter injection. The body turns to the reverse current direction. After the low clutter injection is injected into the plasma, a local radial electric field will be produced at its deposition position, thus forming the electromagnetic force produced by the radial flow and the polar magnetic field, which slowly produces a driving force in the direction of the same current in the ring direction, and gradually increases with the continuous injection of the low clutter until the radial charge is flat. When the force becomes larger and more than the force produced by the low mixed wave momentum, the effect of the cyclic force synthesis changes to the change of the rotating direction of the plasma and the direction of the current. The above two forces are all produced near the low clutter deposition position, and the local changes are passed through the momentum transport (diffusion term and pinch) to the whole separation. The sub body profile enables the plasma rotation to reach a new equilibrium in the circumferential direction.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TL631.24
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;CONSTRUCTION OF GUIZHOU PANXINA THERMAL POWER PLANT PHASE Ⅱ SPEED UP TO PROMOTE THE COURSE "SENDING POWER FROM WEST TO EAST[J];Electricity;2000年03期
2 ;SEASONAL VARIATIONS OF CIRCULATION AND SUSPENDED MATTER TRANSPORT IN THE YELLOW AND EAST CHINA SEAS[J];Journal of Hydrodynamics(Ser.B);2001年04期
3 朱思錚,查學(xué)軍;Simulation Analysis of Divertor Performance in EAST[J];Plasma Science & Technology;2005年04期
4 ;Structural design of cryogenic component support for EAST (HT-7U)[J];Nuclear Science and Techniques;2005年02期
5 劉成岳;吳斌;肖炳甲;舒雙寶;;Modelling of First Discharge in EAST Tokamak[J];Plasma Science and Technology;2008年01期
6 劉磊;肖炳甲;羅正平;;Simulation of the Growth Rate of Vertical Displacement Events and the Requirement of Active Feedback Power Supply in EAST[J];Plasma Science and Technology;2009年01期
7 周芷偉;白紅宇;莊明;胡良兵;夏根海;;Design and Implementation of Quench Protection in the EAST Cryogenic Control System[J];Plasma Science and Technology;2009年03期
8 ;Data monitoring system of technical diagnosis system for EAST[J];Nuclear Science and Techniques;2010年03期
9 謝韓;宋云濤;姚達(dá)毛;王廷梅;楊麗君;;Study on Solid Self-Lubricating Material for Plasma Facing Components in EAST[J];Plasma Science and Technology;2010年06期
10 李妙輝;丁伯江;李文科;孔二華;單家方;劉甫坤;王茂;徐e醵,
本文編號:2102243
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2102243.html