魚雷殼體冷凝器換熱特性研究
本文選題:閉式循環(huán) + 殼體冷凝器; 參考:《中國(guó)艦船研究院》2017年博士論文
【摘要】:閉式循環(huán)熱動(dòng)力系統(tǒng)不向雷外作任何排放,是完全無尾跡的,并且不受背壓影響能適應(yīng)大深度航行,是未來魚雷動(dòng)力發(fā)展的方向之一。由于系統(tǒng)與外界只有熱量交換而無物質(zhì)交換,沒有尾氣排放,發(fā)動(dòng)機(jī)做功后的乏汽必須經(jīng)殼體冷凝器冷凝成水后才能供給系統(tǒng)作為循環(huán)工質(zhì)使用,缺之則無法構(gòu)成閉式循環(huán),其工作特性直接影響汽輪機(jī)工作性能乃至閉式循環(huán)的總效率,所以殼體冷凝器是閉式循環(huán)系統(tǒng)必不可少的關(guān)鍵組件。由于其外部結(jié)構(gòu)受限、內(nèi)部空間也非常有限、熱流體為大流量、高能量的過熱蒸汽等這些特殊條件的限制,目前對(duì)其內(nèi)部流動(dòng)換熱特性并沒有準(zhǔn)確的認(rèn)識(shí),還有待進(jìn)一步的深入研究。本文以閉式循環(huán)熱動(dòng)力系統(tǒng)核心組成部分——?dú)んw冷凝器為研究對(duì)象,建立了殼體冷凝器內(nèi)部蒸汽流動(dòng)凝結(jié)過程的物理模型,設(shè)計(jì)了試驗(yàn)裝置并搭建了蒸汽冷凝試驗(yàn)系統(tǒng)。針對(duì)復(fù)雜約束條件下殼體冷凝器單通道和殼體冷凝器整機(jī),對(duì)其流動(dòng)換熱特性進(jìn)行了深入的理論分析、一維仿真、三維數(shù)值模擬和試驗(yàn)研究,分析了各因素對(duì)蒸汽流動(dòng)換熱特性的影響并利用試驗(yàn)數(shù)據(jù)驗(yàn)證并修正了相關(guān)計(jì)算模型,形成了殼體冷凝器蒸汽冷凝換熱預(yù)測(cè)模型。利用殼體冷凝器單通道和整機(jī)一維仿真計(jì)算模型,計(jì)算獲得了冷卻通道內(nèi)沿軸向溫度、壓力、干度以及速度分布特性。分析表明:在蒸汽冷凝換熱過程中,蒸汽在兩相區(qū)與壁面的換熱量最大,換熱能力沿流向隨著液膜厚度的增加而降低;由于氣液兩相速度差異導(dǎo)致強(qiáng)烈的剪切作用,有利于降低液膜厚度,因此提高蒸汽初速可提高換熱效果。影響環(huán)狀流冷凝段長(zhǎng)度的主要因素有蒸汽入口壓力、流量、溫度、通道大小等工況參數(shù)。隨著入口壓力的升高,飽和溫度上升,凝結(jié)出現(xiàn)位置提前,通道內(nèi)流速下降,冷凝段長(zhǎng)度減小,流動(dòng)損失也下降。但壓力過大時(shí),由于蒸汽密度增大,速度減小,換熱系數(shù)會(huì)隨之降低,導(dǎo)致冷凝段的長(zhǎng)度減小趨勢(shì)慢慢變緩;當(dāng)入口蒸汽流量增加時(shí),入口蒸汽流速也隨之增加,各段換熱系數(shù)亦跟隨增加,故雖然總體換熱量增加,但對(duì)冷凝段長(zhǎng)度影響并不大。隨著蒸汽流量的繼續(xù)增加,總體換熱量也繼續(xù)上升,此時(shí)流速對(duì)換熱效果提高有限,故冷凝段長(zhǎng)度隨蒸汽流量增加迅速增大;提高入口溫度主要影響進(jìn)口段的換熱與流動(dòng)特性,增加冷凝段的長(zhǎng)度,但對(duì)通道內(nèi)的局部換熱系數(shù)影響較小,當(dāng)冷卻通道足夠長(zhǎng)時(shí),一定范圍內(nèi)的入口溫差對(duì)出口參數(shù)影響較小。單位長(zhǎng)度的蒸汽側(cè)換熱系數(shù)隨通道寬度增加而減小,冷卻通道軸向單位長(zhǎng)度壓損隨通道寬度增加不斷減小。增加通道數(shù)量能有效提高殼體冷凝器平均換熱系數(shù),增強(qiáng)殼體冷凝器的換熱能力縮短蒸汽完全冷凝所需的冷凝器長(zhǎng)度,且由于通流面積的增加減少流動(dòng)阻力。隨著通道螺旋角度的減小,通道內(nèi)蒸汽流向變化梯度也越大,能有效沖刷冷凝液膜,削弱液膜在通道壁上的附著能力,進(jìn)而降低液膜厚度提高冷凝器單位長(zhǎng)度換熱系數(shù)。螺旋角越小,蒸汽完全冷凝所需冷凝器長(zhǎng)度越短,但隨著通道螺旋角度的減小殼體冷凝器壓損有增大趨勢(shì)。通過對(duì)殼體冷凝器單通道和整機(jī)三維數(shù)值模擬分析,獲得了冷凝器通道內(nèi)部蒸汽冷凝過程溫度場(chǎng)、壓力場(chǎng)、速度場(chǎng)的分布情況。分析得出了不同入口溫度、流量和壓力等參數(shù)對(duì)通道內(nèi)蒸汽冷凝過程各參數(shù)的影響規(guī)律,比較完整地闡明了魚雷殼體冷凝器通道內(nèi)蒸汽冷凝流動(dòng)換熱特性及其機(jī)理。基于不同參數(shù)下通道內(nèi)部換熱特性參數(shù)擬合,建立了單通道換熱預(yù)測(cè)模型。研究結(jié)果表明:在進(jìn)口段,壁面附近過熱蒸汽受冷極易凝結(jié),僅在冷卻通道中心附近為過熱蒸汽。由于壁面附近受冷蒸汽凝結(jié)過程中釋放大量潛熱,將加熱其附近蒸汽,提高其局部過熱度,從而推遲了其在下游的凝結(jié),甚至使得部分壁面液膜向下游發(fā)展過程中出現(xiàn)二次蒸發(fā)現(xiàn)象。由于氣液速度差異引起的強(qiáng)剪切作用導(dǎo)致界面失穩(wěn),出現(xiàn)較大的流動(dòng)波動(dòng)現(xiàn)象,壁面附近交替出現(xiàn)局部高、低速區(qū)和汽、液集中區(qū)。波動(dòng)現(xiàn)象會(huì)加劇壁面附近低溫流體與冷卻通道中心高溫流體間的質(zhì)量和能量摻混,從而增強(qiáng)了換熱效果,也導(dǎo)致較大的流動(dòng)損失。隨著蒸汽沿軸向發(fā)展,蒸汽溫度不斷下降,整個(gè)冷卻通道橫截面將被氣液混合物充滿。兩相混合區(qū)內(nèi)冷卻通道中心附近高蒸汽體積分?jǐn)?shù)區(qū)更接近下壁面,浮升力和重力對(duì)等溫放熱區(qū)的兩相流動(dòng)影響減弱,冷卻通道內(nèi)氣液分布的發(fā)展主要由壁面溫度或換熱特性主導(dǎo)。不同進(jìn)口蒸汽參數(shù)對(duì)比研究表明,隨著進(jìn)口壓力的增大,凝結(jié)出現(xiàn)位置提前,管內(nèi)流速下降,流動(dòng)損失下降;而蒸汽溫度的增加主要影響進(jìn)口段的換熱與流動(dòng)特性,而對(duì)兩相等溫放熱段及全液換熱段的影響較小,當(dāng)冷卻通道長(zhǎng)度足夠長(zhǎng)時(shí),一定范圍內(nèi)的入口溫差對(duì)出口參數(shù)的影響較小。在本文所研究的通道寬度下,通道換熱能力隨著其寬度的增加而略有下降,但其流動(dòng)損失則明顯減小。從管內(nèi)流型演化來看,在入口段呈現(xiàn)間歇流狀態(tài);而后向下游演化為波狀環(huán)狀流狀態(tài),即冷卻通道四周均被液膜覆蓋,而冷卻通道中心為氣液混合流動(dòng)狀態(tài);隨著冷卻通道內(nèi)流體進(jìn)一步冷卻,最終進(jìn)入全液流動(dòng)狀態(tài),并以較為均勻的平行流動(dòng)狀態(tài)向出口發(fā)展。通過對(duì)流動(dòng)與換熱特性分析,建立了單通道換熱經(jīng)驗(yàn)關(guān)聯(lián)式,并與試驗(yàn)結(jié)果進(jìn)行了對(duì)比,其計(jì)算精度優(yōu)于已有經(jīng)驗(yàn)公式,對(duì)冷凝器流動(dòng)換熱設(shè)計(jì)與計(jì)算具有較好的工程指導(dǎo)意義。初步探討了殼體冷凝器整機(jī)螺旋通道內(nèi)換熱與流動(dòng)特性,計(jì)算結(jié)果表明,采用本文建立的單通道換熱預(yù)測(cè)模型,可較好的預(yù)測(cè)螺旋通道總體換熱與流動(dòng)特性,但兩相區(qū)出現(xiàn)位置存在一定的誤差,這主要是由于所建立的模型沒有考慮離心力影響所致。殼體冷凝器整機(jī)螺旋通道數(shù)值模擬結(jié)果還表明,螺旋通道內(nèi)由于離心力影響,其冷凝水主要附著在內(nèi)壁側(cè),而蒸汽則更易向外壁側(cè)流動(dòng),離心力作用有助于降低冷凝液膜厚度增強(qiáng)蒸汽與冷卻側(cè)壁面間的換熱。對(duì)殼體冷凝器單通道和冷凝器整機(jī)在不同入口蒸汽條件下的冷凝換熱特性進(jìn)行了試驗(yàn)研究。研究結(jié)果表明:通道內(nèi)的蒸汽冷凝總傳熱量、熱流密度、出口溫度、蒸汽側(cè)對(duì)流換熱系數(shù)和總傳熱系數(shù)均隨著入口蒸汽質(zhì)量流量的增大而增大。試驗(yàn)器總傳熱量、熱流密度以及出口溫度隨著入口蒸汽溫度的增加略有上升,但上升幅度非常小,總傳熱系數(shù)和蒸汽側(cè)對(duì)流換熱系數(shù)基本保持不變。通過對(duì)殼體冷凝器整機(jī)試驗(yàn)數(shù)據(jù)分析得到了蒸汽冷凝傳熱經(jīng)驗(yàn)關(guān)聯(lián)式,可以作為殼體冷凝器的設(shè)計(jì)計(jì)算依據(jù),預(yù)測(cè)殼體冷凝器換熱效果。本文的研究不僅有利于提高對(duì)閉式循環(huán)系統(tǒng)殼體冷凝器通道內(nèi)蒸汽冷凝換熱特性及機(jī)理的理解,還有助于殼體冷凝器的開發(fā)以及優(yōu)化設(shè)計(jì)。
[Abstract]:It is one of the direction of future torpedo dynamic development. Because the system and the outside world have only heat exchange and no material exchange, no exhaust emissions, the exhaust gas after the engine doing work must be subjected to a shell condenser. After condensing into water, the supply system can be used as a circulating refrigerant, and the lack of it can not form a closed cycle. Its working characteristics directly affect the performance of the steam turbine and the total efficiency of the closed cycle. So the shell condenser is a necessary key component in the closed cycle system. The thermal fluid is limited by the special conditions such as large flow, high energy superheated steam and so on. At present, there is no accurate understanding of the heat transfer characteristics of its internal flow. It still needs further study. In this paper, the shell condenser is the core component of the closed cycle thermal dynamic system, and the internal steam of the shell condenser is established. A test device was designed and a steam condensing test system was designed. The flow and heat transfer characteristics of a shell condenser with a single channel and a shell condenser under complex constraints were analyzed theoretically, one dimensional simulation, three dimensional numerical simulation and experimental study, and the analysis of the various factors on steam. The influence of the flow and heat transfer characteristics and the correlation calculation model were verified and corrected, and the prediction model of condensation heat transfer in the shell condenser was formed. The distribution characteristics of the axial temperature, pressure, dry degree and velocity in the cooling channel were obtained by using the single channel of the shell condenser and the one dimensional simulation calculation model of the whole machine. During the steam condensation heat transfer process, the heat transfer of steam in the two phase and the wall is the largest, and the heat transfer ability decreases along with the increase of the thickness of the liquid film. Because the difference of the velocity of gas and liquid leads to the strong shear effect, it is beneficial to the reduction of the thickness of the liquid film. Therefore, the increase of the initial steam velocity can improve the heat transfer effect. The main factors of the degree are steam inlet pressure, flow, temperature, and channel size. With the increase of inlet pressure, the saturation temperature rises, the position of condensation appears in advance, the flow velocity in the channel decreases, the length of condensing section decreases, and the flow loss also decreases. When the inlet steam flow rate increases, the inlet steam flow increases and the inlet steam flow velocity increases and the heat transfer coefficient increases. The increase of speed to heat transfer is limited, so the length of the condensing section increases rapidly with the increase of steam flow, and the increase of the inlet temperature mainly affects the heat transfer and flow characteristics of the inlet section, and increases the length of the condensing section, but it has little effect on the local heat transfer coefficient in the channel. When the cooling channel is long enough, the inlet temperature difference within a certain range is affected by the outlet parameters. The heat transfer coefficient of the unit length decreases with the increase of the channel width, and the axial unit length pressure loss decreases with the width of the channel. Increasing the number of channels can effectively increase the average heat transfer coefficient of the shell condenser, and enhance the heat transfer capacity of the shell condenser to shorten the condenser's length required for the complete condensation of steam. With the increase of flow area, the flow resistance is reduced. With the decrease of the channel spiral angle, the change gradient of the flow direction in the channel is also greater. It can effectively scour the condensing liquid film, weaken the adhesion ability of the liquid film on the channel wall, and then reduce the thickness of the liquid film to increase the unit length heat transfer coefficient of the condenser. The smaller the helix angle, the steam is completely condensed. The shorter the length of the condenser, the pressure loss of the condenser is increased with the decrease of the spiral angle of the channel. The distribution of the temperature field, pressure field and velocity field in the condensation process of the condenser channel is obtained by the three-dimensional numerical simulation analysis of the single channel and the whole machine. The different inlet temperature and flow rate are obtained. The influence of parameters such as pressure and other parameters on the parameters of steam condensation in the channel is described. The heat transfer characteristics and its mechanism in the condensers channel of torpedo condenser are completely clarified. A single channel heat transfer prediction model is established based on the parameters fitting of the internal heat transfer characteristics under different parameters. The results show that the inlet section is in the inlet section. The superheated steam near the wall is very easy to condense and only is superheated in the vicinity of the center of the cooling channel. Due to the release of latent heat in the process of cold steam condensation near the wall, the steam near the wall will be heated to increase its local overheat, thus postponing its condensation at the lower reaches, so that the liquid film of some wall surface will come down to the downstream process. There are two phenomena of evaporation at present. Due to the strong shear action caused by the difference of gas and liquid velocity, the interfacial instability is caused by the strong shear effect, and there is a large flow wave phenomenon. The local high, low velocity zone and steam and liquid concentration zone are alternately appeared near the wall. The wave phenomenon will aggravate the mass and energy mixing between the low temperature fluid near the wall and the high temperature fluid at the center of the cooling channel. With the development of the steam along the axial direction, the steam temperature decreases and the cross section of the whole cooling channel will be filled with gas-liquid mixture. The high steam volume near the center of the cooling channel near the center of the two phase mixing area is closer to the lower wall, the floating lift and the two phase flow in the gravity heating zone. The development of the gas and liquid distribution in the cooling channel is mainly dominated by the wall temperature or heat transfer characteristics. The comparison of the parameters of the imported steam shows that with the increase of the inlet pressure, the position of the condensation appears in advance, the flow velocity in the tube decreases and the flow loss decreases, while the increase of the steam temperature mainly affects the heat exchange and flow characteristics of the inlet section. The influence of the two equal temperature exothermic section and the full liquid heat transfer section is smaller. When the length of the cooling channel is long enough, the inlet temperature difference in a certain range has little effect on the outlet parameters. The heat transfer capacity of the channel decreases slightly with the increase of the width of the channel, but the flow loss decreases obviously. In the evolution, there is a state of intermittent flow in the entrance section, and then into the state of the wave like flow in the downstream, that is, the cooling channel is covered by the liquid film for 4 weeks and the center of the cooling channel is a gas-liquid mixed flow state. With the further cooling of the fluid in the cooling channel, the flow state eventually enters the full liquid state, and the flow state is more uniform parallel to the flow state. Through the analysis of the flow and heat transfer characteristics, a single channel heat transfer empirical correlation is established and compared with the test results. The calculation accuracy is better than the existing empirical formula. It has a better engineering guiding significance for the flow and heat transfer design and calculation of the condenser. The calculation results show that the single channel heat transfer prediction model established in this paper can better predict the overall heat transfer and flow characteristics of the spiral channel, but there is a certain error in the position of the two phase region. This is mainly because the model does not consider the influence of the centrifugal force shadow. The numerical model of the spiral channel of the shell condenser is the whole model. The results also show that the condensate is mainly attached to the inner side of the inner wall because of the influence of centrifugal force in the spiral channel, while the steam is easier to flow outside the wall. The centrifugal force helps to reduce the thickness of the condensate film to enhance the heat transfer between the steam and the cooling side wall. The results show that the total heat transfer, heat flux, outlet temperature, the convection heat transfer coefficient and the total heat transfer coefficient in the steam side increase with the increase of the inlet steam mass flow. The total heat transfer, heat flow density and outlet temperature of the tester are along with the inlet steam temperature. The increase is slightly increased, but the increase is very small. The total heat transfer coefficient and the convection heat transfer coefficient of the steam side are basically unchanged. Through the analysis of the experimental data of the shell condenser, the empirical correlation of the steam condensation heat transfer is obtained. It can be used as the calculation basis for the design and calculation of the shell condenser. The study of the heat transfer effect of the shell condenser is predicted. It is not only helpful to improve the understanding of the characteristics and mechanism of condensing heat transfer in the channel of the closed loop system, but also to the development of the shell condenser and the optimization design.
【學(xué)位授予單位】:中國(guó)艦船研究院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TJ630.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聞劭意,彭曉峰,吳海玲,王補(bǔ)宣;粗糙表面不同粗糙元間局部流動(dòng)與傳熱特性[J];化工學(xué)報(bào);2005年03期
2 李向陽(yáng);成文俊;趙永杰;楊琳梅;;高溫高速氣體射流沖擊傾斜平板的換熱特性研究[J];機(jī)電設(shè)備;2011年04期
3 楊震;趙振興;郭琴琴;劉宏;曹子棟;;煤粉加壓氣化爐對(duì)流段換熱特性試驗(yàn)[J];重慶大學(xué)學(xué)報(bào);2011年10期
4 葛夢(mèng)然;閆柯;高軍;葛培琪;;空間錐形螺旋彈性管束換熱特性數(shù)值分析[J];石油機(jī)械;2011年11期
5 李葉;劉圣春;饒志明;楊旭凱;;冰漿儲(chǔ)存與融化及流動(dòng)換熱特性研究現(xiàn)狀及展望[J];低溫與超導(dǎo);2012年11期
6 韓雅慧;;氣體壓力對(duì)氣流沖擊平板換熱特性的影響研究[J];制造業(yè)自動(dòng)化;2012年24期
7 劉東;蔣斌;陳飛;;微方肋冷卻系統(tǒng)的換熱特性[J];強(qiáng)激光與粒子束;2013年02期
8 常海萍,,黃太平,陳萬(wàn)兵;渦輪葉片與輪盤間樅樹型榫頭間隙中的流動(dòng)與換熱特性試驗(yàn)研究[J];TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS;1995年01期
9 杜東興,李志信,過增元,岳敏;微細(xì)光滑管內(nèi)可壓縮流動(dòng)換熱特性的數(shù)值研究[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年11期
10 莊正寧,唐桂華,朱長(zhǎng)新;不凝氣體存在時(shí)水平管束冷凝換熱特性的試驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2000年07期
相關(guān)會(huì)議論文 前10條
1 董志銳;劉松齡;張玉金;許都純;游紹坤;楊林;;渦輪葉柵端壁區(qū)的流動(dòng)和換熱特性試驗(yàn)研究[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
2 李汶蔚;孫立成;李勇;;豎直管內(nèi)蒸汽冷凝強(qiáng)化換熱特性研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告(第二卷)——中國(guó)核學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集第3冊(cè)(核能動(dòng)力分卷(下))[C];2011年
3 徐紹琨;陳寶明;汲水;;小尺度流道換熱器換熱特性的實(shí)驗(yàn)研究[A];山東省暖通空調(diào)制冷2007年學(xué)術(shù)年會(huì)論文集[C];2007年
4 張圓圓;姬長(zhǎng)發(fā);毋震;;酒窩板換熱器換熱特性的實(shí)驗(yàn)研究[A];第二屆中國(guó)西部綠色低碳節(jié)能減排及可再生能源技術(shù)研討會(huì)論文集[C];2010年
5 黃翔超;丁國(guó)良;胡海濤;高屹峰;;R410A—油混合物在5mm光管內(nèi)冷凝換熱特性的實(shí)驗(yàn)研究[A];上海市制冷學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
6 劉家琛;巨永林;;低溫絕熱管內(nèi)液氮兩相流動(dòng)換熱特性研究[A];上海市制冷學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集[C];2013年
7 張宗衛(wèi);朱惠人;趙曙;郭濤;;射流、旋流、出流共同作用下矩形通道換熱特性研究[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
8 寧?kù)o紅;劉圣春;彭苗;李惠宇;;R290管內(nèi)凝結(jié)換熱特性與凝結(jié)機(jī)制分析[A];第十屆海峽兩岸冷凍空調(diào)技術(shù)研討會(huì)論文集[C];2011年
9 雷菲寧;徐小煒;蘇亞欣;;結(jié)構(gòu)參數(shù)對(duì)內(nèi)置式PV-Trombe墻內(nèi)換熱特性影響[A];高等學(xué)校工程熱物理第十九屆全國(guó)學(xué)術(shù)會(huì)議論文集[C];2013年
10 侯亞麗;汪建文;;微管道內(nèi)壁面平均溫度的實(shí)驗(yàn)測(cè)量[A];高等學(xué)校工程熱物理第十九屆全國(guó)學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 張雙;數(shù)據(jù)中心用泵驅(qū)動(dòng)兩相冷卻回路換熱特性研究[D];北京工業(yè)大學(xué);2015年
2 徐曉;無導(dǎo)葉對(duì)轉(zhuǎn)渦輪高壓級(jí)動(dòng)葉換熱特性的研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年
3 韓勇軍;魚雷殼體冷凝器換熱特性研究[D];中國(guó)艦船研究院;2017年
4 郭聰;被動(dòng)式冷卻系統(tǒng)中的流動(dòng)冷凝及其對(duì)系統(tǒng)換熱特性的影響[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2015年
5 路廣遙;管束通道內(nèi)單相及兩相沸騰換熱特性及流動(dòng)特性的研究[D];上海交通大學(xué);2008年
6 莊兆意;直接式原生污水源熱泵系統(tǒng)的防堵技術(shù)及換熱特性研究[D];哈爾濱工業(yè)大學(xué);2012年
7 杜東興;可壓縮性及粗糙度對(duì)微細(xì)管內(nèi)流動(dòng)及換熱特性的影響[D];清華大學(xué);2000年
8 熊鈞;HCFC123高溫工況下水平管外冷凝換熱特性研究[D];哈爾濱工業(yè)大學(xué);2006年
9 劉東;高熱流密度微結(jié)構(gòu)散熱器換熱特性的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
10 陳華軍;旋轉(zhuǎn)曲線管道內(nèi)流動(dòng)結(jié)構(gòu)與換熱特性研究[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 曾俊雄;流場(chǎng)渦旋核心分布對(duì)雙工質(zhì)冷卻帶肋通道換熱特性的影響[D];大連交通大學(xué);2015年
2 何院;旋轉(zhuǎn)條件下典型形狀孔結(jié)構(gòu)流動(dòng)與換熱特性研究[D];南京航空航天大學(xué);2014年
3 史學(xué)捷;對(duì)轉(zhuǎn)渦輪盤腔內(nèi)的流動(dòng)和換熱特性研究[D];中國(guó)民用航空飛行學(xué)院;2016年
4 徐世杰;大氣壓強(qiáng)對(duì)艙內(nèi)空氣流動(dòng)與傳熱特性的影響研究[D];東南大學(xué);2015年
5 郝玲;冰漿在管道中流動(dòng)換熱特性的研究[D];天津商業(yè)大學(xué);2016年
6 段煉;傾斜和肋化靶面陣列射流沖擊換熱特性研究[D];南京航空航天大學(xué);2016年
7 徐義凱;微型間歇式回?zé)崞髁鲃?dòng)及換熱特性研究[D];南京航空航天大學(xué);2016年
8 蔣蔚;雙層壁微小尺度夾層沖擊換熱特性研究[D];沈陽(yáng)航空航天大學(xué);2017年
9 楊巧文;管內(nèi)單相流動(dòng)與傳熱特性的研究[D];安徽理工大學(xué);2017年
10 劉瑋;液冷式電池?zé)峁芾硐到y(tǒng)換熱特性與控制方法研究[D];吉林大學(xué);2017年
本文編號(hào):2056438
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2056438.html