高濕度煙氣水平管降膜吸收過程的傳熱傳質(zhì)研究
本文選題:潛熱回收 + 水回收 ; 參考:《中國科學(xué)院工程熱物理研究所》2017年博士論文
【摘要】:隨著經(jīng)濟、社會快速發(fā)展,我國天然氣消費量增長迅速。天然氣主要成分為甲烷,在供熱裝置或濕化燃?xì)廨啓C循環(huán)中燃燒后,產(chǎn)生大量蒸汽,汽化潛熱可觀。對濕煙氣進行潛熱和水的回收利用,節(jié)能和節(jié)水效益顯著。開式循環(huán)吸收式熱泵是一種新型的濕煙氣潛熱和水回收利用方式,具有不受露點影響、水熱回收量大、適用性強等優(yōu)點。作為開式吸收式熱泵的關(guān)鍵部件,吸收器的性能優(yōu)劣對熱泵整體性能、設(shè)備尺寸及投資造價等產(chǎn)生顯著影響。在吸收器的諸多形式中,水平管降膜吸收器具有結(jié)構(gòu)簡單、阻力低及處理量大等優(yōu)點,在吸收式熱泵中應(yīng)用廣泛。但是,水平管降膜吸收過程包含復(fù)雜的氣液兩相流動和傳熱傳質(zhì)過程,濕煙氣中不可吸收氣體的存在使傳質(zhì)阻力增大。目前,對于高濕度煙氣條件下水平管降膜吸收過程的流動、傳熱傳質(zhì)機理的認(rèn)識尚不清晰,適用的吸收器設(shè)計方法缺乏。針對這兩個問題,本文采用數(shù)值模擬和實驗研究相結(jié)合的方法,開展了以下研究:(1)建立了適用于逆向氣流存在的水平管降膜流動三維瞬態(tài)模型,能夠準(zhǔn)確反映氣液兩相復(fù)雜的流動行為及液體管間流型轉(zhuǎn)變。開展了實驗驗證工作,計算所得流型轉(zhuǎn)變雷諾數(shù)與實驗數(shù)據(jù)的最大相對誤差小于10%。利用該模型,分析了逆向氣流速度對液體管間流型轉(zhuǎn)變雷諾數(shù)以及三種流型液膜厚度沿管周向、軸向分布的影響。研究結(jié)果表明:隨逆向氣流速度增大,滴狀至滴-柱狀、滴-柱狀至柱狀以及柱-片狀至片狀的流型轉(zhuǎn)變雷諾數(shù)均增大,而柱至柱-片狀則減小;加入逆向氣流后,滴狀流型和柱狀流型下液膜最薄點對應(yīng)的周向角范圍由90°~100°變?yōu)?0°~80°,片狀流型下無變化,出現(xiàn)在120°;滴狀流型下,水平管上半周液膜較薄且最厚液膜約為最薄液膜的兩倍,在一個流動周期內(nèi)柱狀流型下水平管上半周以及片狀流型下管全周的液膜厚度分布呈現(xiàn)穩(wěn)定的"穩(wěn)定期-高峰-穩(wěn)定期"特征。(2)基于建立的水平管降膜流動瞬態(tài)模型,針對純蒸汽內(nèi)冷型、高濕度煙氣絕熱型兩種典型的水平管降膜吸收過程,分別建立了吸收二維瞬態(tài)模型。設(shè)計和搭建了高濕度煙氣絕熱型水平管降膜吸收實驗臺,開展了模型的驗證工作。與實驗結(jié)果的對比表明,該模型出口參數(shù)及溶液內(nèi)部溫度分布的最大相對誤差不超過9.5%,可準(zhǔn)確預(yù)測溶液和濕煙氣出口參數(shù)及內(nèi)部參數(shù)的局部分布特征。利用該兩模型,分析了兩種基本流型下溶液和濕煙氣平均參數(shù)隨流動時間的變化規(guī)律,及局部吸收速率沿流動方向的分布特征。研究結(jié)果表明,吸收達(dá)到相對穩(wěn)定后,純蒸汽內(nèi)冷型吸收過程的管間區(qū)和降膜區(qū)溶液的吸收量隨管排降低均增大,滴狀流型下最低管排降膜區(qū)溶液的吸收量幾乎與其他區(qū)域吸收量之和相同,柱狀流型下管間區(qū)吸收量約為降膜區(qū)的1/2。濕煙氣絕熱型吸收過程的管間區(qū)和降膜區(qū)溶液的吸收量隨管排降低均減小,滴狀流型下管間區(qū)吸收量約為降膜區(qū)的1/2,片狀流型下管間區(qū)吸收量約與降膜區(qū)相同。滴狀流型和片狀流型下,降膜區(qū)域內(nèi)局部傳質(zhì)速率的平均值分別約為管間區(qū)域的6倍和10倍。(3)基于上述流動、吸收模型,建立了高濕度煙氣內(nèi)冷型水平管降膜吸收過程二維和三維瞬態(tài)模型。將二維和三維模型所得不同區(qū)域溶液和濕煙氣局部參數(shù)相對比,最大相對誤差不超過5%;二維模型和實驗所得溶液和濕煙氣出口參數(shù)相對比,最大相對誤差不超過10%,兩個模型精度較好。利用三維模型,分析了三種基本流型下溶液和濕煙氣平均參數(shù)隨流動時間的變化規(guī)律,以及局部參數(shù)和吸收速率沿管軸向和流動位置的分布特征。研究表明,滴狀、柱狀和片狀流型下,吸收達(dá)到相對穩(wěn)定狀態(tài)約分別需3.0s、2.0s和2.0s,之后滴、柱狀流型不同區(qū)域溶液和濕煙氣平均參數(shù)等均呈周期性變化,周期分別為0.1s和0.2s,片狀流型下則保持恒定。滴狀流型下,沿管軸向方向,由于液滴撞擊產(chǎn)生的軸向波動會導(dǎo)致溶液濃度約增大3%~9%,溶液溫度約增大2%~6%,液滴形成區(qū)溶液溫度約增大8%,吸收速率約增大25%~150%,濕煙氣含濕量隨軸向位置增大呈現(xiàn)"高-低-高-低-高"的變化趨勢,最大值出現(xiàn)在第二排管兩側(cè);柱狀流型下,液柱撞擊使溶液濃度約增大6%,溫度約增大2%~6%,濕煙氣含濕量呈現(xiàn)"高-低-高"的變化趨勢,最大值出現(xiàn)在第二、三排管的兩側(cè)。(4)利用發(fā)展的高濕度煙氣內(nèi)冷型吸收二維瞬態(tài)模型,開展了適用于高濕度煙氣潛熱和水回收吸收器的性能多因子正交試驗設(shè)計,提出了總傳質(zhì)面積的計算方法,獲得了吸收性能指標(biāo)與操作參數(shù)和結(jié)構(gòu)參數(shù)的回歸式,獲得了傳熱、傳質(zhì)過程無量綱特征數(shù)方程。研究結(jié)果表明,濕煙氣進口含濕量是影響界面?zhèn)髻|(zhì)系數(shù)、水回收率和濕度效率的最重要因子;溶液進口體積流量是影響界面?zhèn)鳠嵯禂?shù)和能量利用效率的最主要因子;管徑是影響總傳質(zhì)面積的最主要因子。針對應(yīng)用于燃?xì)夤嵫b置或濕化燃?xì)廨啓C循環(huán)等的濕煙氣潛熱和水回收的吸收器,可利用獲得的吸收性能指標(biāo)與操作參數(shù)和結(jié)構(gòu)參數(shù)的回歸式,進行設(shè)計及結(jié)構(gòu)優(yōu)化。
[Abstract]:With the rapid development of economy and society, the consumption of natural gas in China is increasing rapidly. The main component of natural gas is methane. After the combustion in the heating device or the wet gas turbine cycle, a large amount of steam is produced and the latent heat of vaporization is considerable. The latent heat and water recovery of wet flue gas are used, the energy saving and the water saving benefit are remarkable. The open type circulating absorption heat pump is a kind of heat pump. A new type of latent heat and water recovery of wet flue gas has the advantages of not affected by dew point, high water heat recovery and strong applicability. As the key component of the open absorption heat pump, the performance of the absorber has a significant influence on the overall performance of the heat pump, the size of the equipment and the cost of investment. The falling film absorber has the advantages of simple structure, low resistance and large amount of treatment. It is widely used in the absorption heat pump. However, the process of falling film absorption in the horizontal tube includes complex gas-liquid two phase flow and heat and mass transfer process. The non absorbable gas in wet flue gas increases the mass transfer resistance. At present, the horizontal pipe under the condition of high humidity flue gas is used. The understanding of the flow of the falling film absorption process, the understanding of the mechanism of heat and mass transfer is not clear, and the applicable absorber design method is short. In this paper, the following research is carried out by combining numerical simulation and experimental research. (1) the three-dimensional transient model of the horizontal tube falling film flow suitable for the existence of reverse flow is established. The experimental verification is carried out. The maximum relative error between the Reynolds number and the experimental data is less than 10%., and the Reynolds number of the flow pattern in the liquid tube and the circumferential direction of the three flow patterns are analyzed. The results show that, with the increase of the reverse flow velocity, the Reynolds number of dripper to drop column, drop column to columnar and column to sheet form is increased, but the column to column flake decreases, and the circumferential angle ranges from 90 to 10 when the reverse flow is added. The 0 degree changes from 70 to 80 degrees, and there is no change under the flake flow pattern, which appears at 120 degrees. Under the dripping pattern, the liquid film on the horizontal tube is thinner and the thickest liquid film is about two times that of the thinnest liquid film. In a flow period, the thickness distribution of the liquid film in the half cycle of the horizontal tube and the flake flow pattern under a cylindrical flow pattern is stable "stable period peak stability". "Characteristics. (2) based on the transient model of the horizontal tube falling film flow established, the two dimensional transient model was established for the absorption process of two typical horizontal tube falling film absorption process of pure steam internal cooling and high humidity flue gas adiabatic type. A high humidity flue gas adiabatic horizontal tube falling film absorption experimental platform was designed and built, and the verification of the model was carried out. The comparison with the experimental results shows that the maximum relative error of the model exit parameters and the temperature distribution in the solution is not more than 9.5%. It can accurately predict the local distribution characteristics of the outlet parameters and the internal parameters of the solution and wet flue gas. By using the two model, the changes of the average parameters of the solution and the wet flue gas under the two basic flow patterns are analyzed with the change of the flow time. The results show that the absorption of the solution in the intertubular and falling film region of the pure steam absorption process increases with the decrease of the tube discharge, and the absorption of the lowest pipe discharge zone under the dripping flow is almost the same as that of the other regions after the absorption is relatively stable. The absorption of the intertubular and falling film zone in the 1/2. wet smoke heat absorption process under the columnar flow pattern is approximately reduced with the decrease of the tube discharge. The absorption of the intertubular area under the dripping pattern is about 1/2 in the falling film zone, and the absorption of the intertubular area under the flake flow pattern is about the same as that in the falling film zone. The average value of local mass transfer rate in the membrane region is about 6 times and 10 times of the intertubular region. (3) based on the above flow and absorption model, a two-dimensional and three-dimensional transient model of the falling film absorption process of a high humidity flue gas internal cold type pipe is established. The error is not more than 5%, and the two dimensional model and the experimental solution and the wet flue gas exit parameters are compared, the maximum relative error is not more than 10%, and the two models are of better accuracy. Using the three-dimensional model, the variation rules of the average parameters of the solution and wet flue gas under the three basic flow patterns and the axial and absorption velocity along the tube are analyzed. The distribution characteristics of the flow position show that the absorption of the droplet, column and flake flow pattern is about 3.0s, 2.0S and 2.0S respectively, and then the droplets and the average parameters of the different region solution and the wet flue gas of the cylindrical flow pattern are all periodic, and the period is 0.1s and 0.2S respectively. In the axial direction of the tube, the axial fluctuation caused by the droplet impact will cause the solution concentration to increase by 3% to 9%, the solution temperature increases about 2% ~ 6%, the solution temperature increases by 8% and the absorption rate increases by 25% to 150%. The moisture content of the wet flue gas increases with the axial position and presents a "high to low to high to high" trend with the axial position increasing, the maximum value appears in second. At the two sides of the tube, the solution concentration increased by 6% and the temperature increased by 2% to 6% under the column flow pattern. The moisture content of the wet flue gas presented a "high to low" trend, and the maximum value appeared on both sides of the second, third rows of tubes. (4) the latent heat of high humidity flue gas was used to develop the latent heat of high humidity flue gas and the latent heat of high humidity flue gas. The performance of water recovery absorber is designed by multi factor orthogonal design. The calculation method of total mass transfer area is put forward. The regression formula of absorption performance index and operation parameters and structural parameters is obtained. Heat transfer and mass transfer process are obtained. The results show that the moisture content of the wet smoke is affected by the mass transfer coefficient of the interface and water recovery. The most important factor of rate and humidity efficiency is that the volume flow of the solution is the most important factor affecting the heat transfer coefficient and energy utilization efficiency of the interface; the pipe diameter is the most important factor affecting the total mass transfer area. The design and structural optimization of the absorption performance index and the regression formula of operation parameters and structural parameters are carried out.
【學(xué)位授予單位】:中國科學(xué)院工程熱物理研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TK124
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉升;郝英立;;豎直管內(nèi)降膜流動氣液兩相運動數(shù)值模擬[J];熱科學(xué)與技術(shù);2008年01期
2 汪磊磊;由世俊;王書中;楊筱靜;;水平管束降膜流動模態(tài)轉(zhuǎn)變實驗研究[J];建筑科學(xué);2010年10期
3 宋建;胡珀;暴凱;楊燕華;;基于最小能量模型求解降膜最小濕潤率問題的改進[J];原子能科學(xué)技術(shù);2012年08期
4 于意奇;楊燕華;程旭;;平板降膜波動形態(tài)的數(shù)值研究[J];原子能科學(xué)技術(shù);2012年11期
5 宋健;于意奇;楊燕華;;平板降膜流動統(tǒng)計規(guī)律的實驗研究[J];核動力工程;2012年05期
6 牛曉峰;杜塏;杜順祥;;磁場作用下垂直管外氨水降膜吸收的模型[J];化工學(xué)報;2007年06期
7 崔曉鈺;石景禎;徐之平;唐聰;;膜反轉(zhuǎn)板式降膜再生過程研究[J];上海理工大學(xué)學(xué)報;2007年04期
8 彭友順;楊立;杜永成;;過冷降膜的溫度場及紅外隱身應(yīng)用研究[J];紅外與激光工程;2012年10期
9 崔曉鈺,蔡祖恢,李美玲;膜內(nèi)橫向?qū)α鲗︿寤嚱的の者^程影響的數(shù)值計算[J];上海理工大學(xué)學(xué)報;1998年02期
10 李艷;張書超;梅寧;趙杰;;水平螺旋槽管降膜流動和傳熱特性研究[J];熱科學(xué)與技術(shù);2011年02期
相關(guān)會議論文 前8條
1 汪磊磊;由世俊;王書中;楊筱靜;;水平管束降膜流動模態(tài)轉(zhuǎn)變實驗研究[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會學(xué)術(shù)文集[C];2010年
2 毛雯萍;孫靖瑜;陸震;曹衛(wèi)華;李大慶;;垂直管外降膜吸收的理論及實驗研究[A];第九屆全國冷水機組與熱泵技術(shù)學(xué)術(shù)會議論文集[C];1999年
3 毛雯萍;孫靖瑜;陸震;曹衛(wèi)華;李大慶;;垂直管外降膜吸收的理論及實驗研究[A];上海市制冷學(xué)會一九九七年學(xué)術(shù)年會論文集[C];1997年
4 羅林聰;張冠敏;潘繼紅;田茂誠;;管形對水平管外降膜流動流型及波長的影響[A];第二十五屆全國水動力學(xué)研討會暨第十二屆全國水動力學(xué)學(xué)術(shù)會議文集(下冊)[C];2013年
5 牛曉峰;王良虎;杜塏;;一種氨水垂直降膜吸收傳質(zhì)模型[A];制冷空調(diào)新技術(shù)進展——第三屆制冷空調(diào)新技術(shù)研討會論文集[C];2005年
6 李大慶;陸震;范林;;降膜吸收器新設(shè)計方法研究[A];上海市制冷學(xué)會一九九七年學(xué)術(shù)年會論文集[C];1997年
7 張茂勇;張軍;鄭良村;馬寧;;降膜冷凝器技術(shù)及其應(yīng)用于熱泵系統(tǒng)的實踐研究[A];走中國創(chuàng)造之路——2011中國制冷學(xué)會學(xué)術(shù)年會論文集[C];2011年
8 陳鐵;杜塏;徐正宏;;磁場對氨水吸收過程影響的機理及實驗研究[A];全國暖通空調(diào)制冷2008年學(xué)術(shù)年會資料集[C];2008年
相關(guān)重要報紙文章 前3條
1 記者 魏雙林;高性能圓塊式石墨降膜吸收器投放市場[N];中國冶金報;2008年
2 魏雙林;石墨降膜吸收器造福氯堿環(huán)保[N];中國化工報;2008年
3 魏雙林;石墨降膜吸收器換熱效率高[N];中國化工報;2010年
相關(guān)博士學(xué)位論文 前10條
1 劉華;蒸汽橫掠降膜流動水平管束的兩相流動過程研究[D];大連理工大學(xué);2015年
2 李美軍;高濕度煙氣水平管降膜吸收過程的傳熱傳質(zhì)研究[D];中國科學(xué)院工程熱物理研究所;2017年
3 劉艷麗;搖擺狀態(tài)下降膜吸收過程中動量、熱量和質(zhì)量傳遞規(guī)律研究[D];大連理工大學(xué);2002年
4 牟興森;橫管外降膜流動與蒸發(fā)傳熱研究[D];大連理工大學(xué);2013年
5 于意奇;大尺度平板水膜流動行為的數(shù)值模擬和試驗研究[D];上海交通大學(xué);2012年
6 尹涌瀾;沉降膜換熱器基礎(chǔ)研究及其復(fù)合源熱泵系統(tǒng)應(yīng)用分析[D];吉林大學(xué);2012年
7 孫博;氣液降膜流動的計算傳遞學(xué)研究[D];天津大學(xué);2013年
8 薄守石;溴化鋰溶液降膜流動及傳熱傳質(zhì)的數(shù)值研究[D];大連理工大學(xué);2011年
9 王書中;水平管束降膜動力學(xué)與界面吸收性能實驗研究[D];天津大學(xué);2008年
10 張建文;降膜結(jié)晶技術(shù)及其數(shù)值模擬研究[D];北京化工大學(xué);1998年
相關(guān)碩士學(xué)位論文 前10條
1 申曦;淋激式換熱器降膜換熱理論分析研究[D];北京建筑大學(xué);2015年
2 曾金輝;同軸降膜放電反應(yīng)器等離子體降解布洛芬的技術(shù)研究[D];浙江大學(xué);2015年
3 孫玉祥;橫管外降膜流動與蒸發(fā)傳熱研究[D];河南科技大學(xué);2015年
4 凡偉偉;[EMIM][DEP]/H_2O垂直管外降膜性能的數(shù)值模擬[D];大連理工大學(xué);2015年
5 胡會濤;氨水納米溶液降膜發(fā)生過程的數(shù)值模擬與試驗研究[D];東南大學(xué);2015年
6 鄂文汲;氨水吸收器熱質(zhì)交換面積計算方法的探討[D];東南大學(xué);2015年
7 王晶;洗滌冷卻室內(nèi)流體流動行為研究[D];華東理工大學(xué);2016年
8 張發(fā)勇;翅片管降膜冷凝器的實驗研究[D];華南理工大學(xué);2016年
9 王天;溴化鋰吸收式制冷系統(tǒng)水平管外降膜吸收強化傳熱性能研究[D];長安大學(xué);2016年
10 徐孟飛;雙工質(zhì)對吸收式制冷循環(huán)性能分析與降膜發(fā)生特性研究[D];東南大學(xué);2016年
,本文編號:2015127
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2015127.html