天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

體系相互作用與發(fā)光和催化機(jī)理研究

發(fā)布時(shí)間:2018-06-08 23:37

  本文選題:相互作用 + 聚合物發(fā)光; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文


【摘要】:材料是支撐人類文明發(fā)展的物質(zhì)基礎(chǔ)。高效、經(jīng)濟(jì)和實(shí)用的新型材料的持續(xù)涌現(xiàn)為社會(huì)進(jìn)步提供了不竭助力。因此,新材料的研發(fā)成為了當(dāng)前一項(xiàng)長(zhǎng)久的目標(biāo)。然而,材料結(jié)構(gòu)的復(fù)雜性為實(shí)驗(yàn)的合成和表征帶來(lái)了困難。幸運(yùn)的是,理論計(jì)算和模擬從內(nèi)部機(jī)制和電子結(jié)構(gòu)層次為材料的解析提供了有力的工具。特別是近年來(lái)高性能計(jì)算和復(fù)雜電子結(jié)構(gòu)理論和模型的快速發(fā)展,使得第一性原理電子結(jié)構(gòu)計(jì)算和分子動(dòng)力學(xué)模擬能力進(jìn)一步提升。從原子和分子尺度上對(duì)材料性能進(jìn)行預(yù)測(cè)和解釋,抓住體系的關(guān)鍵要素,進(jìn)行合理的構(gòu)效和設(shè)計(jì),與實(shí)驗(yàn)相輔相成,成為了新型材料研發(fā)的有力手段。不同體系如分子或材料之間的相互作用是連接物質(zhì)結(jié)構(gòu)和性質(zhì)的關(guān)鍵橋梁。通過(guò)解析體系中分子或材料本身的結(jié)構(gòu)和性能,利用分子間和材料間的相互作用進(jìn)行理性的構(gòu)效和復(fù)合,為提高材料本身固有性能,彌補(bǔ)缺陷,協(xié)同增效,設(shè)計(jì)并獲得新型性能的功能化材料研發(fā)提供了新的思路和途徑。本論文從不同體系間(分子和材料)的相互作用出發(fā),采用第一性原理的密度泛函理論(DFT)進(jìn)行模擬計(jì)算,研究分子間的相互作用(π-π耦合)對(duì)分子發(fā)光的影響(第三章)和功函數(shù)、電負(fù)性等不同的材料間相互作用引起的電荷極化對(duì)催化機(jī)理的影響(第四章)。主要包括四個(gè)部分:第一部分即第一章,主要基于后面的工作介紹了兩個(gè)內(nèi)容,第一個(gè)是聚合物發(fā)光材料研究進(jìn)展。與改變發(fā)光材料本身的內(nèi)部結(jié)構(gòu)(如官能團(tuán)修飾,增加共軛長(zhǎng)度)調(diào)控發(fā)光過(guò)程相比,通過(guò)分子間π-π耦合相互作用形成的聚合物發(fā)光材料操作性更大,應(yīng)用范圍更廣,因而,引起了人們的關(guān)注和研究。雖然最基本的發(fā)光原理與其他發(fā)光分子相同,但由于分子間的相互作用,聚合物發(fā)光又有其獨(dú)特的內(nèi)部機(jī)制,這種獨(dú)特的機(jī)制為聚合物的發(fā)光帶來(lái)了特定的性能,也為調(diào)控分子發(fā)光過(guò)程提供了可能性。第二個(gè)是金屬半導(dǎo)體及二維材料催化反應(yīng)的研究進(jìn)展。催化反應(yīng)的核心內(nèi)容是催化劑的設(shè)計(jì)和研究。金屬催化劑反應(yīng)性能優(yōu)越,但缺點(diǎn)是穩(wěn)定性較差,價(jià)格昂貴,而相對(duì)而言,半導(dǎo)體催化劑穩(wěn)定性較好,但催化活性又相對(duì)較低。因此,催化劑構(gòu)效時(shí),可以利用不同材料間的相互作用進(jìn)行復(fù)合,在性能互補(bǔ)的前提下,產(chǎn)生協(xié)同效應(yīng),提高材料的催化反應(yīng)效率和穩(wěn)定性,降低成本。另一方面,作為一類無(wú)金屬的材料,以石墨烯為代表的二維材料催化劑因其優(yōu)良的化學(xué)穩(wěn)定性、半導(dǎo)體性、易調(diào)控性和優(yōu)異的光學(xué)性質(zhì)也在化學(xué)反應(yīng)中展現(xiàn)出優(yōu)越的性能,成為了當(dāng)前催化研究的一個(gè)重要的焦點(diǎn)。第二章主要介紹了以第一性原理為基礎(chǔ)的密度泛函理論,包括它的理論框架,發(fā)展流程,含時(shí)密度泛函理論以及量化應(yīng)用軟件包。密度泛函(DFT)的理論基礎(chǔ)是量子力學(xué),其基本研究量是體系的電子密度。通過(guò)對(duì)Kohn-Sham方程的求解,把相互作用的多粒子體系轉(zhuǎn)換成無(wú)相互作用的單粒子體系,并通過(guò)合適的交換關(guān)聯(lián)泛函進(jìn)行近似,經(jīng)過(guò)一系列的循環(huán)迭代直到收斂,計(jì)算出體系基態(tài)時(shí)的能量和密度。而在密度泛函中引入含時(shí)微擾的含時(shí)密度泛函理論,則可更為精確的模擬激發(fā)態(tài)的電子結(jié)構(gòu)。密度泛函理論在應(yīng)用上的最終實(shí)現(xiàn)依賴量化軟件包的計(jì)算模擬。第三章介紹了分子間相互作用與分子發(fā)光的研究,主要包括兩個(gè)工作:第一工作是分子聚集誘導(dǎo)系間竄越增強(qiáng)磷光。分子內(nèi)的系間竄越(ISC)在各種光電應(yīng)用中起著重要的作用。然而,利用傳統(tǒng)的化學(xué)修飾和重金屬摻雜等方法提高系間竄越幾率十分不便,限制了其應(yīng)用范圍。在我們的工作中,我們提出了一種新型的"聚集誘導(dǎo)系間竄越"(AI-ISC)機(jī)制。在聚合物分子中,利用分子間相互作用引起的激發(fā)態(tài)能級(jí)分裂,可以改善單重和三重激發(fā)態(tài)的能級(jí)匹配,進(jìn)而提高系間竄越的幾率。通過(guò)第一性原理的模擬計(jì)算和實(shí)驗(yàn)光譜檢測(cè),分子聚集體中這種增強(qiáng)的系間竄越幾率大大促進(jìn)了分子的磷光發(fā)射。同時(shí),磷光發(fā)射也隨著聚集程度的增強(qiáng)而發(fā)生紅移,為磷光波長(zhǎng)的調(diào)節(jié)提供了一個(gè)便捷的渠道。第二個(gè)工作是自組裝有機(jī)量子點(diǎn)的發(fā)光機(jī)制。在這個(gè)工作中,我們模擬設(shè)計(jì)并合成了一種新型的有機(jī)染料量子點(diǎn),該量子點(diǎn)體系在溶液中展現(xiàn)出了超高的熒光量子產(chǎn)率,而其通過(guò)疏水相互作用和π-π堆積形成固態(tài)時(shí),熒光產(chǎn)率較低,且發(fā)光波長(zhǎng)對(duì)激發(fā)波長(zhǎng)具有很強(qiáng)的依賴。理論計(jì)算發(fā)現(xiàn)這種量子點(diǎn)的發(fā)光原理為在在溶液中分子聚合被破壞,主要以單分子形式存在,通過(guò)與溶劑發(fā)生作用,形成了 push-pull電荷轉(zhuǎn)移機(jī)制,進(jìn)而影響了發(fā)光效率。而在固態(tài)時(shí),分子發(fā)生π-π堆積和H-聚集,能級(jí)產(chǎn)生分裂,分子振動(dòng)受到抑制,弛豫變慢,違反了 Kasha's規(guī)則,發(fā)光波長(zhǎng)對(duì)激發(fā)波長(zhǎng)具有很強(qiáng)的依賴性,同時(shí)激發(fā)態(tài)的輻射躍遷幾率下降,熒光量子產(chǎn)率降低。第四章介紹了材料間相互作用引起的電荷極化與催化機(jī)理的研究,主要包括三個(gè)工作:第一個(gè)工作是石墨烯基復(fù)合材光催化制氫與安全儲(chǔ)氫。在這個(gè)工作中,我們?cè)O(shè)計(jì)了一種C_xN_y和石墨烯基材料復(fù)合的三明治結(jié)構(gòu),其中,碳氮材料(g-C_xN_y)夾在兩層官能團(tuán)修飾的石墨烯中(GR_F)。第一性原理計(jì)算發(fā)現(xiàn),由于g-C_xN_y和GR_F之間相互作用引起的電荷極化,使得這種三明治體系可以同時(shí)捕獲紫外光和可見(jiàn)光,進(jìn)而激發(fā)產(chǎn)生空穴遷移到外層的GR_F上。在光生空穴的幫助下,吸附在GR_F上的水發(fā)生裂解,產(chǎn)生質(zhì)子,受聚集負(fù)電荷的C_xN_y靜電吸引,質(zhì)子穿透石墨烯遷移到C_xN_y上,并在光生電子的作用下,產(chǎn)生氫氣。由于外層的石墨烯結(jié)構(gòu)不允許氫氣的穿透,使得氫氣與外界分離,儲(chǔ)存在體系中。綜合可知,我們?cè)O(shè)計(jì)的這種三明治復(fù)合體系實(shí)現(xiàn)了光催化制氫和安全儲(chǔ)氫一體化。第二個(gè)工作是氮摻雜石墨烯催化還原對(duì)羥基苯酚。實(shí)驗(yàn)中,通過(guò)多種MOF材料為前驅(qū)模板在高溫下燒結(jié)得到了氮摻雜石墨烯的多層碳材料并催化還原對(duì)硝基苯酚。含有吡咯N摻雜石墨烯最多的材料催化活性最佳。理論計(jì)算通過(guò)對(duì)三種N摻雜石墨烯的構(gòu)型,電子結(jié)構(gòu),吸附性能,導(dǎo)電性的研究,發(fā)現(xiàn):摻雜的N原子和石墨烯由于電負(fù)性的差異,相互作用后發(fā)生電荷極化,電荷發(fā)生聚集,提供活性位點(diǎn);吡咯N摻雜石墨烯中活性位點(diǎn)附近正電荷聚集最多,對(duì)4-NP-的吸附能最強(qiáng),耦合活化程度較高;吡咯N摻雜石墨烯體系延續(xù)了石墨烯材料優(yōu)良的導(dǎo)電性能,為還原反應(yīng)的發(fā)生提供源源不斷的驅(qū)動(dòng)力。因此,吡咯N摻雜石墨烯對(duì)催化還原對(duì)硝基苯酚具有較高的反應(yīng)活性,與實(shí)驗(yàn)結(jié)果吻合。第三個(gè)工作是TiO_2-Pd@Pt光催化裂解水。理論和實(shí)驗(yàn)合作設(shè)計(jì)并合成了原子厚度可調(diào)節(jié)的Pd@Pt殼層結(jié)構(gòu),并將這種殼層結(jié)構(gòu)與n型半導(dǎo)體,銳鈦礦TiO_2結(jié)合。在這一體系中,Pd@Pt殼層結(jié)構(gòu)在光催化水裂解反應(yīng)中,起到了雙重功效,這雙重功效均取決于復(fù)合材料中金屬Pt的原子厚度。這雙重功效分別是:利用Pd,Pt間相互作用引起的界面電荷極化提高金屬上的電子捕獲能力,進(jìn)而促進(jìn)電荷分離;通過(guò)Pt表面電荷密度的增加和晶格應(yīng)力提高對(duì)于水的吸附能力。這些性能的提高顯著的增強(qiáng)了光催化裂解水的催化活性。
[Abstract]:Material is the material foundation to support the development of human civilization. The continuous emergence of new materials with high efficiency, economy and practicality has provided an inexhaustible contribution to social progress. Therefore, the development of new materials has become a permanent goal. However, the complexity of the material structure has brought difficulties to the synthesis and characterization of the experiment. Fortunately, theoretical calculation. And simulation provides a powerful tool for the analysis of materials from the internal mechanism and the electronic structure level. Especially in recent years, the high performance calculation and the rapid development of complex electronic structure theory and model make the ability of the electronic structure calculation and molecular dynamics simulation of the first principle to be further improved. From the atomic and molecular scales to material properties The key elements of the system can be predicted and explained, and the key elements of the system are seized and the structure efficiency and design are reasonable. It is complementary to the experiment. It has become a powerful tool for the research and development of new materials. The interaction between different systems, such as molecules or materials, is a key bridge to connect the structure and nature of material. And properties, using the interaction of intermolecular and material to make rational structure effect and compound, and provide new ideas and ways to improve the intrinsic properties of the material, make up the defects, synergy the efficiency, design and obtain the new functional functional materials. This paper is based on the interaction of different systems (molecules and materials). The density functional theory (DFT) of the first principle is used to simulate the effects of intermolecular interaction (PI - pi coupling) on molecular luminescence (third chapter) and the effect of charge polarization on the catalytic mechanism caused by the interaction of power functions, electronegativity and other intermaterial interactions (fourth chapter). The first part is the first chapter, the first chapter Two contents are introduced mainly based on the later work. The first is the progress in the research of polymer luminescent materials. Compared with the changes in the internal structure of the luminescent materials, such as the functional group modification and the increase of the conjugate length, the polymer luminescent materials formed by the interaction of the intermolecular pion coupling interaction are more operable and applied. More widely, it has attracted people's attention and research. Although the most basic principle of luminescence is the same as other luminescent molecules, because of the interaction between molecules, the luminescence of polymer has its unique internal mechanism. This unique mechanism provides specific properties for the luminescence of polymers and provides the possibility for the regulation of molecular luminescence. The second is the progress in the catalytic reaction of metal semiconductors and two-dimensional materials. The core content of the catalytic reaction is the design and research of the catalyst. The catalytic performance of the metal catalyst is superior, but the disadvantage is that the stability is poor and the price is expensive, and the stability of the catalyst is better, but the catalytic activity is relatively low. Therefore, the catalytic activity is relatively low. When the agent is constructed, it can be combined with the interaction of different materials to produce synergistic effects on the premise of complementing performance, to improve the efficiency and stability of the catalytic reaction and to reduce the cost. On the other hand, as a kind of non metal material, the two-dimensional material catalyst with graphene as the substitute for its excellent chemical stability. Semiconductors, easy regulation and excellent optical properties also exhibit superior properties in chemical reactions. The second chapter mainly introduces the density functional theory based on the first principle, including its theoretical framework, development process, time-dependent density functional theory and quantitative response. The theoretical basis of the density functional (DFT) is the quantum mechanics, which is based on the quantum mechanics. Its basic research amount is the electronic density of the system. By solving the Kohn-Sham equation, the interacting multiple particle system is converted into a single particle system without interaction. The energy and density of the system ground state are calculated, and the time-dependent density functional theory with time-dependent perturbation is introduced in the density functional. The electronic structure of the excited state can be more accurately simulated. The final realization of the density functional theory in the application depends on the calculation simulation of the quantitative software package. The third chapter introduces the intermolecular interaction and the molecules. The research of luminescence mainly consists of two tasks: the first work is the enhancement of phosphorescence between the molecular aggregation induced lines. The intermolecular channeling and crossing (ISC) plays an important role in various optoelectronic applications. However, it is very inconvenient to use traditional chemical modification and heavy metal doping to increase the probability of intersystem channeling, which limits its application. In our work, we propose a new type of "AI-ISC" mechanism. In polymer molecules, the energy level division caused by intermolecular interaction can be used to improve the energy level matching between the single and three excited states, and then the probability of the intersystem crossing is improved. In the experimental spectrum, the increasing probability of this enhancement in the molecular aggregates greatly promotes the molecular phosphor emission. At the same time, the phosphor emission also redshifts with the enhancement of the aggregation degree, providing a convenient channel for the adjustment of the phosphorescence wavelength. The second work is the luminescence mechanism of the self assembled organic quantum dots. In this study, a novel quantum dot of organic dye was designed and synthesized. The quantum dot system showed a high fluorescence quantum yield in the solution. The fluorescence yield was lower when the hydrophobic interaction and pion pion accumulated to form solid state, and the luminescence wavelength had a strong dependence on the excitation wavelength. Theoretical calculations found that the quantum dots have a strong dependence on the excitation wavelength. The principle of quantum dots luminescence is that the molecular polymerization in the solution is destroyed, mainly in the form of single molecule. By the action of the solvent, the push-pull charge transfer mechanism is formed, and the luminescence efficiency is influenced. In the solid state, the molecules have pion pion accumulation and H- aggregation, the energy level is split, the molecular vibration is suppressed and the relaxation slows down. In violation of the Kasha's rule, the luminescence wavelength has a strong dependence on the excitation wavelength, while the radiation transition probability of the excited state decreases and the fluorescence quantum yield is reduced. The fourth chapter introduces the study of the charge polarization and the catalytic mechanism caused by the intermaterial interaction, including three work: the first work is the photoluminescence of graphene based composites In this work, we have designed a sandwich structure of C_xN_y and graphene based materials, in which carbon and nitrogen (g-C_xN_y) is sandwiched between two layers of functionalgraphene modified graphene (GR_F). First principle calculation shows that the charge polarization caused by the interaction between g-C_xN_y and GR_F makes this three The Meiji system can capture both ultraviolet and visible light at the same time, and then stimulate the GR_F of the hole moving to the outer layer. Under the help of the photogenerated hole, the water adsorbed on the GR_F occurs cracking, produces protons, is attracted by the C_xN_y electrostatic charge of the aggregated negative charge, the proton transmigrates to the C_xN_y through the graphene, and produces hydrogen under the action of photogenerated electrons. Gas. As the structure of the outer layer of graphene does not allow hydrogen penetration, the hydrogen is separated from the outside and stored in the system. It is known that the sandwich composite system designed by us has realized the integration of photocatalytic hydrogen production and safe hydrogen storage. The second work is the nitrogen doped graphene catalyzed reduction of hydroxyl phenol. In the experiment, through a variety of MOF The material was sintered at high temperature to obtain the multilayer carbon material of nitrogen doped graphene at high temperature and catalyze the reduction of p-nitrophenol. The best catalytic activity of the material containing pyrrole N doped graphene was the best. The theoretical calculation was carried out through the study of the configuration, electronic structure, adsorption and conductivity of three kinds of N doped graphene, and found that doped N atoms Due to the electronegativity difference between graphene and graphene, the charge polarization, charge accumulation and active site are provided after interaction. The active site of positive charge near the active site in pyrrole N doped graphene is the most, the adsorption energy of 4-NP- is the strongest, and the coupling activation degree is higher. The pyrrole N doped graphene system continues the excellent conductivity of graphene materials. It provides a constant source of driving force for the reduction of the reaction. Therefore, pyrrole N doped graphene has a high reaction activity to the catalytic reduction of p-nitrophenol, which is in agreement with the experimental results. The third work is TiO_2-Pd@Pt photocatalytic cracking water. The theoretical and experimental cooperating design and synthesis of the atomic thickness adjustable Pd@Pt shell structure, The shell structure is combined with the N type semiconductor, anatase TiO_2. In this system, the Pd@Pt shell structure has dual functions in the photocatalytic water cracking reaction, which all depend on the atomic thickness of the metal Pt in the composite. The double effects are the increase of the interface charge polarization caused by the interaction of Pd and Pt, respectively. The electron capture on the metal promotes charge separation and increases the adsorption capacity of water by increasing the surface charge density of the Pt and the stress of the lattice. These properties increase the catalytic activity of the photocatalytic cracking water.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.3;O644.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;石墨烯相變研究取得新進(jìn)展[J];潤(rùn)滑與密封;2009年05期

2 ;科學(xué)家首次用納米管制造出石墨烯帶[J];電子元件與材料;2009年06期

3 ;石墨烯研究取得系列進(jìn)展[J];高科技與產(chǎn)業(yè)化;2009年06期

4 ;新材料石墨烯[J];材料工程;2009年08期

5 ;日本開(kāi)發(fā)出在藍(lán)寶石底板上制備石墨烯的技術(shù)[J];硅酸鹽通報(bào);2009年04期

6 馬圣乾;裴立振;康英杰;;石墨烯研究進(jìn)展[J];現(xiàn)代物理知識(shí);2009年04期

7 傅強(qiáng);包信和;;石墨烯的化學(xué)研究進(jìn)展[J];科學(xué)通報(bào);2009年18期

8 ;納米中心石墨烯相變研究取得新進(jìn)展[J];電子元件與材料;2009年10期

9 徐秀娟;秦金貴;李振;;石墨烯研究進(jìn)展[J];化學(xué)進(jìn)展;2009年12期

10 張偉娜;何偉;張新荔;;石墨烯的制備方法及其應(yīng)用特性[J];化工新型材料;2010年S1期

相關(guān)會(huì)議論文 前10條

1 成會(huì)明;;石墨烯的制備與應(yīng)用探索[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

2 錢(qián)文;郝瑞;侯仰龍;;液相剝離制備高質(zhì)量石墨烯及其功能化[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第04分會(huì)場(chǎng)摘要集[C];2010年

3 張甲;胡平安;王振龍;李樂(lè);;石墨烯制備技術(shù)與應(yīng)用研究的最新進(jìn)展[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第3分冊(cè))[C];2010年

4 趙東林;白利忠;謝衛(wèi)剛;沈曾民;;石墨烯的制備及其微波吸收性能研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年

5 沈志剛;李金芝;易敏;;射流空化方法制備石墨烯研究[A];顆粒學(xué)最新進(jìn)展研討會(huì)——暨第十屆全國(guó)顆粒制備與處理研討會(huì)論文集[C];2011年

6 王冕;錢(qián)林茂;;石墨烯的微觀摩擦行為研究[A];2011年全國(guó)青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年

7 趙福剛;李維實(shí);;樹(shù)枝狀結(jié)構(gòu)功能化石墨烯[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年

8 吳孝松;;碳化硅表面的外延石墨烯[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

9 周震;;后石墨烯和無(wú)機(jī)石墨烯材料:計(jì)算與實(shí)驗(yàn)的結(jié)合[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年

10 周琳;周璐珊;李波;吳迪;彭海琳;劉忠范;;石墨烯光化學(xué)修飾及尺寸效應(yīng)研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

相關(guān)重要報(bào)紙文章 前10條

1 姚耀;石墨烯研究取得系列進(jìn)展[N];中國(guó)化工報(bào);2009年

2 劉霞;韓用石墨烯制造出柔性透明觸摸屏[N];科技日?qǐng)?bào);2010年

3 記者 王艷紅;“解密”石墨烯到底有多奇妙[N];新華每日電訊;2010年

4 本報(bào)記者 李好宇 張們捷(實(shí)習(xí)) 特約記者 李季;石墨烯未來(lái)應(yīng)用的十大猜想[N];電腦報(bào);2010年

5 證券時(shí)報(bào)記者 向南;石墨烯貴過(guò)黃金15倍 生產(chǎn)不易炒作先行[N];證券時(shí)報(bào);2010年

6 本報(bào)特約撰稿 吳康迪;石墨烯 何以結(jié)緣諾貝爾獎(jiǎng)[N];計(jì)算機(jī)世界;2010年

7 記者 謝榮 通訊員 夏永祥 陳海泉 張光杰;石墨烯在泰實(shí)現(xiàn)產(chǎn)業(yè)化[N];泰州日?qǐng)?bào);2010年

8 本報(bào)記者 紀(jì)愛(ài)玲;石墨烯:市場(chǎng)未啟 炒作先行[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2011年

9 周科競(jìng);再說(shuō)石墨烯的是與非[N];北京商報(bào);2011年

10 王小龍;新型石墨烯材料薄如紙硬如鋼[N];科技日?qǐng)?bào);2011年

相關(guān)博士學(xué)位論文 前10條

1 呂敏;雙層石墨烯的電和磁響應(yīng)[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年

2 羅大超;化學(xué)修飾石墨烯的分離與評(píng)價(jià)[D];北京化工大學(xué);2011年

3 唐秀之;氧化石墨烯表面功能化修飾[D];北京化工大學(xué);2012年

4 王崇;石墨烯中缺陷修復(fù)機(jī)理的理論研究[D];吉林大學(xué);2013年

5 盛凱旋;石墨烯組裝體的制備及其電化學(xué)應(yīng)用研究[D];清華大學(xué);2013年

6 姜麗麗;石墨烯及其復(fù)合薄膜在電極材料中的研究[D];西南交通大學(xué);2015年

7 姚成立;多級(jí)結(jié)構(gòu)石墨烯/無(wú)機(jī)非金屬?gòu)?fù)合材料的仿生合成及機(jī)理研究[D];安徽大學(xué);2015年

8 伊丁;石墨烯吸附與自旋極化的第一性原理研究[D];山東大學(xué);2015年

9 梁巍;基于石墨烯的氧還原電催化劑的理論計(jì)算研究[D];武漢大學(xué);2014年

10 王義;石墨烯的模板導(dǎo)向制備及在電化學(xué)儲(chǔ)能和腫瘤靶向診療方面的應(yīng)用[D];復(fù)旦大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 詹曉偉;碳化硅外延石墨烯以及分子動(dòng)力學(xué)模擬研究[D];西安電子科技大學(xué);2011年

2 王晨;石墨烯的微觀結(jié)構(gòu)及其對(duì)電化學(xué)性能的影響[D];北京化工大學(xué);2011年

3 苗偉;石墨烯制備及其缺陷研究[D];西北大學(xué);2011年

4 蔡宇凱;一種新型結(jié)構(gòu)的石墨烯納米器件的研究[D];南京郵電大學(xué);2012年

5 金麗玲;功能化石墨烯的酶學(xué)效應(yīng)研究[D];蘇州大學(xué);2012年

6 黃凌燕;石墨烯拉伸性能與尺度效應(yīng)的研究[D];華南理工大學(xué);2012年

7 劉汝盟;石墨烯熱振動(dòng)分析[D];南京航空航天大學(xué);2012年

8 雷軍;碳化硅上石墨烯的制備與表征[D];西安電子科技大學(xué);2012年

9 于金海;石墨烯的非共價(jià)功能化修飾及載藥系統(tǒng)研究[D];青島科技大學(xué);2012年

10 李晶;高分散性石墨烯的制備[D];上海交通大學(xué);2013年



本文編號(hào):1997739

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1997739.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶838bc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com