靜電紡聚偏氟乙烯多尺度樹枝結(jié)構(gòu)納米纖維的制備及其應(yīng)用研究
本文選題:靜電紡絲 + 聚偏氟乙烯; 參考:《天津工業(yè)大學(xué)》2017年博士論文
【摘要】:自然界經(jīng)過長期的進(jìn)化發(fā)展,創(chuàng)造出了諸多結(jié)構(gòu)特殊、性能優(yōu)異的物質(zhì),吸引了國內(nèi)外大量學(xué)者的探索研究。通過深入了解自然界創(chuàng)造出的這些生物的特性,可為人們仿造自然并創(chuàng)造出新型的材料與結(jié)構(gòu)提供思路。隨著納米纖維的快速發(fā)展,靜電紡絲已經(jīng)成為一種連續(xù)制備納米纖維的常用技術(shù),由于其原料來源范圍廣、纖維結(jié)構(gòu)可調(diào)性強等技術(shù)優(yōu)勢,為納米仿生結(jié)構(gòu)的研究提供了技術(shù)保障。本文綜述了靜電紡絲制備的各種仿生異形納米纖維以及仿生異形納米纖維在各個領(lǐng)域的應(yīng)用;陟o電紡絲技術(shù)的原理,通過調(diào)控聚合物的溶液性質(zhì)及工藝參數(shù),采用一步法電紡制備了多尺度樹枝結(jié)構(gòu)納米纖維,利用高速攝像觀察了紡絲射流在電場中的運動情況,揭示了樹枝狀納米纖維的成形機理,為樹枝狀納米纖維的可控制備奠定了基礎(chǔ);樹枝狀結(jié)構(gòu)極大的減小了纖維膜的孔徑尺寸,大幅度提高了纖維膜的比表面積,利用這些優(yōu)點將制備的樹枝狀納米纖維膜應(yīng)用于空氣過濾和液體過濾,探討纖維膜的樹枝狀結(jié)構(gòu)與過濾性能之間的關(guān)系;通過吡咯單體原位聚合和與高錳酸鉀氧化還原反應(yīng)制備了聚偏氟乙烯(PVDF)負(fù)載二氧化錳(Mn02)(Mn02@PVDF)樹枝狀納米纖維膜,并研究其對Pb2+吸附性能;通過溶液聚合和一步電紡技術(shù)制備了 pH響應(yīng)型PVDF接枝聚丙烯酸(PVDF-g-PAA)樹枝狀納米纖維膜,并研究了其在不同pH條件下智能油水分離性能。論文主要研究內(nèi)容如下:通過向高聚物溶液中加入有機支化鹽四丁基氯化銨(TBAC),采用一步法電紡制備了 PVDF樹枝狀納米纖維膜。研究了鹽的種類、鹽的添加量、紡絲液濃度和紡絲工藝參數(shù)對纖維膜樹枝狀形貌的影響。結(jié)果表明,加入有機支化鹽制備的納米纖維中樹枝狀含量明顯高于加入無機鹽制備的納米纖維,TBAC濃度為0.1 mol L-1,紡絲電壓為25 kV,接收距離為15 cm,擠出速率為1 mL h-1時,制得的納米纖維樹枝狀形貌最佳。樹枝狀納米纖維由主干纖維和分支纖維組成,其中,主干纖維直徑為100 nm-500 nm,分支纖維直徑為5 nm-100 nm。通過高速攝像觀察紡絲射流在電場中的運動分析推斷樹枝狀納米纖維的形成機理,結(jié)果表明,樹枝狀納米纖維是由射流劈裂形成的。在樹枝狀納米纖維膜可控制備的基礎(chǔ)上,考察了樹枝狀結(jié)構(gòu)對纖維膜孔徑尺寸、比表面積、力學(xué)性能及親水性能的影響,結(jié)果表明,樹枝狀結(jié)構(gòu)極大的減小了纖維膜的孔徑尺寸,大幅度的提高了纖維膜的比表面積和力學(xué)性能,且纖維膜的親水性能有所提升。對比分析了不同面密度的樹枝狀納米纖維膜和常規(guī)納米纖維膜對0.26μm NaCl粒子的過濾性能,結(jié)果表明,樹枝狀納米纖維膜的過濾性能明顯優(yōu)于常規(guī)納米纖維膜,面密度僅為1.0 g/m2的樹枝狀納米纖維膜的過濾效率高達(dá)99.999%,且過濾阻力僅為124.2 Pa。測試了不同樹枝狀含量的納米纖維膜對0.3μm的聚苯乙烯微粒的截留率,結(jié)果顯示,厚度為30±2 μm的樹枝狀結(jié)構(gòu)含量最多的納米纖維膜的截留率高達(dá)99.9%,在0.1 MPa壓力下純水通量達(dá)到23930 L/m2h,且由過濾后纖維膜的截面圖可以發(fā)現(xiàn),該過濾以表層過濾為主,有助于反沖清洗重復(fù)利用;跇渲罱Y(jié)構(gòu)納米纖維膜更大的比表面積的優(yōu)勢,通過吡咯單體的原位聚合在PVDF/TBAC樹枝狀納米纖維膜的表面均勻包覆一層聚吡咯(PPy),然后通過PPy與高錳酸鉀之間的氧化還原反應(yīng)在其表面負(fù)載MnO2,制得MnO2@PVDF樹枝狀納米纖維膜,并將其應(yīng)用到Pb2+吸附領(lǐng)域。研究結(jié)果表明,MnO2均勻的負(fù)載在纖維膜表面且負(fù)載MnO2后纖維膜親水性增強。測試了該纖維膜對Pb2+的吸附性能,結(jié)果顯示纖維膜對Pb2+最大吸附量為318.47 mg/g,吸附過程符合準(zhǔn)二級吸附動力學(xué)和Langmuir等溫吸附模型,吸附熱力學(xué)研究結(jié)果表明吸附過程為吸熱反應(yīng),升高溫度有利于吸附反應(yīng)的進(jìn)行,該吸附劑對Pb2+的吸附具有較好的選擇性和重復(fù)利用性。由XPS分析可知,吸附過程中吸附劑表面的錳氧化物與溶液中的Pb2+之間發(fā)生質(zhì)子交換,而達(dá)到的吸附作用。利用多乙烯多胺(PEPA)的脫氟脫氫作用,通過溶液均相聚合和靜電紡絲技術(shù)制備出一種具有pH響應(yīng)性的PVDF-g-PAA樹枝狀納米纖維智能膜。研究了 PEPA和丙烯酸加入量對纖維膜形貌結(jié)構(gòu)、力學(xué)性能和親水性能的影響,結(jié)果表明,加入PEPA后,成功引入了碳碳雙鍵,當(dāng)PEPA加入量低于10%時,纖維膜的樹枝狀形貌良好:隨著PEPA加入量的增加,纖維膜力學(xué)性能下降,最終選用PEPA加入量為5%;隨著丙烯酸加入量的增加,樹枝狀分支纖維含量逐漸增加、纖維膜孔徑逐漸減小且力學(xué)性能有所下降,當(dāng)丙烯酸加入量為10%時,纖維膜呈現(xiàn)良好的pH響應(yīng)潤濕性。進(jìn)一步考察了纖維膜的智能油水分離性能,結(jié)果表明,通過改變介質(zhì)pH,該纖維膜僅在重力驅(qū)動下能實現(xiàn)分離水或分離油,且具有較高的分離效率(99%)和滲透通量(9600 L/m2h)。本文采用一步法靜電紡絲技術(shù)可控制備出PVDF樹枝狀納米纖維,樹枝狀結(jié)構(gòu)賦予纖維膜的小孔徑和大比表面積,在空氣/液體過濾、重金屬離子吸附和油水分離領(lǐng)域均顯示出廣闊的應(yīng)用前景和巨大的潛在應(yīng)用價值,為靜電紡納米纖維的應(yīng)用開辟了一條新的道路。
[Abstract]:After a long period of evolution, nature has created a lot of material with special structure and excellent performance, which has attracted a lot of scholars at home and abroad. Through the thorough understanding of the characteristics of these creatures created by nature, it can provide ideas for people to imitate nature and create new materials and structures. With the rapid development of nanofibers, the rapid development of the materials and structures can be made. Development, electrospinning has become a common technique for continuous preparation of nanofibers. Due to its wide range of raw materials and strong tunability of fiber structure, it provides a technical guarantee for the study of nano biomimetic structures. The application of various fields. Based on the principle of electrostatic spinning technology, multi-scale dendritic structure nanofibers were prepared by one step electrospun by controlling the solution properties and technological parameters of the polymer. The movement of the spinning jets in the electric field was observed by high-speed photography, and the forming mechanism of the dendrimer like nanofibers was revealed. The controllable preparation of nanofibers laid the foundation, the dendrimer structure greatly reduced the size of the fiber membrane and greatly improved the specific surface area of the fiber membrane. Using these advantages, the dendritic nanofibrous membranes were used in the air filtration and liquid filtration, and the relationship between the dendritic structure of the fiber membrane and the filtration performance was discussed. Polyvinylidene fluoride (PVDF) supported manganese dioxide (Mn02) (Mn02@PVDF) dendrimer nanofibrous membrane was prepared by in-situ polymerization of pyrrole and oxidation and reduction with Potassium Permanganate, and the adsorption properties of Pb2+ were studied. PH responsive PVDF graft polyacrylic acid (PVDF-g-PAA) dendrimer nanoparticles were prepared by solution polymerization and one step electrospun technology. The properties of intelligent oil and water separation under different pH conditions were studied. The main contents of this paper were as follows: by adding organic branched salt four Butyl Ammonium Chloride (TBAC) into the polymer solution, the PVDF dendrimer nanofibrous membrane was prepared by one step electrospun. The types of salt, the amount of salt, the concentration of spinning solution and the spinning machine were studied. The results show that the dendrimer content of nanofibers prepared by adding organic branched salts is obviously higher than that of nanofibers added to the inorganic salts. The TBAC concentration is 0.1 mol L-1, the spinning voltage is 25 kV, the receiving distance is 15 cm and the extrusion speed is 1 mL H-1, and the dendrimer morphology of the nanofibers is obtained. The dendritic nanofibers are composed of backbone fibers and branch fibers, in which the diameter of the main fiber is 100 nm-500 nm and the diameter of the branch fiber is 5 nm-100 nm.. The formation mechanism of the dendrimer nanofibers is deduced by the motion analysis of the spinning jets in the electric field by high-speed photography. The results show that the dendritic nanofibers are split by the jet. On the basis of the controllable preparation of the dendrimer nanofiber membrane, the influence of the dendritic structure on the pore size, specific surface area, mechanical properties and hydrophilic properties of the fiber membrane was investigated. The results showed that the dendrimer structure greatly reduced the diameter of the fiber membrane, and greatly improved the specific surface area and mechanical properties of the fiber membrane. The hydrophilic properties of the membrane have been improved. The filtration performance of the 0.26 m NaCl particles with different dendrimers and conventional nanofibrous membranes with different surface density is compared and analyzed. The results show that the filtration performance of the dendrimer nanofiber membrane is obviously better than that of the conventional nanofiber membrane and the dendrimer membrane with a surface density of only 1 g/m2. The efficiency is up to 99.999%, and the filtration resistance is only 124.2 Pa.. The retention rate of polystyrene particles with different dendrimers content of nanofiber film to 0.3 mu m is measured. The result shows that the interception rate of the nanofiber film with the most thickness of 30 + 2 mu m is up to 99.9%, and the pure water flux is 23930 L/m2h under the 0.1 MPa pressure. The cross section of the filtered fiber membrane can be found that the filter is dominated by surface filtration and helps to reuse the backflushing cleaning. Based on the advantage of the larger specific surface area of the dendritic structure nanofiber membrane, a layer of polypyrrole (PPy) is uniformly coated on the surface of the PVDF/TBAC dendrimer nanofiber membrane by the in-situ polymerization of the pyrrole monomer, and then through the P The redox reaction between Py and Potassium Permanganate was loaded on the surface of MnO2 to produce MnO2@PVDF dendrimer nanofibrous membrane and applied to the field of Pb2+ adsorption. The results showed that the uniform load of MnO2 was on the surface of the fiber membrane and the hydrophilic property of the fiber membrane was enhanced after the load of MnO2. The adsorption properties of the fiber membrane to Pb2+ were tested and the results showed fiber. The maximum adsorption capacity of the membrane to Pb2+ is 318.47 mg/g. The adsorption process conforms to the quasi two class adsorption kinetics and Langmuir isothermal adsorption model. The adsorption thermodynamics research results show that the adsorption process is endothermic reaction and the elevated temperature is beneficial to the adsorption reaction. The adsorbent has good selectivity and reutilization on the adsorption of Pb2+. It is divided into XPS. In the process of adsorption, the adsorption effect of proton exchange between the manganese oxide on the adsorbent surface and the Pb2+ in the solution is achieved. Using the defluorination and dehydrogenation of polyethene polyamine (PEPA), a kind of PVDF-g-PAA dendritic nanofiber intelligent membrane with pH response is prepared by the solution homogeneous polymerization and electrospinning technology. The effects of PEPA and acrylic acid addition on the morphology, mechanical properties and hydrophilic properties of the fiber membrane were investigated. The results showed that carbon carbon double bonds were successfully introduced after the addition of PEPA. When the addition of PEPA was less than 10%, the dendritic morphology of the fiber membrane was good: with the increase of the amount of PEPA, the mechanical properties of the fiber membrane decreased, and the final selection of PEPA was 5%. With the increase of the amount of acrylic acid added, the content of branched branching fibers increased gradually, the pore size of the fiber membrane decreased and the mechanical properties decreased. When the amount of acrylic acid added to 10%, the fiber membrane showed a good pH response wettability. The intelligent oil and water separation performance of the fiber membrane was further investigated. The results showed that the fiber was changed by changing the medium pH. The membrane can only separate water or separate oil under the drive of gravity, and has high separation efficiency (99%) and permeation flux (9600 L/m2h). In this paper, one step method of electrostatic spinning can be used to control the preparation of PVDF dendrimer nanofibers. The dendritic structure gives the small pore size and large specific surface area of the fiber membrane, and it is filtered in air / liquid and heavy metal is removed. The fields of sub adsorption and oil and water separation show wide application prospects and great potential application value, which opens a new way for the application of electrostatically woven nanofibers.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ342.712
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊恩龍;王善元;李妮;趙叢濤;;靜電紡絲技術(shù)及其研究進(jìn)展[J];產(chǎn)業(yè)用紡織品;2007年08期
2 蘇丁倉;;新型熔融型靜電紡絲裝置[J];紡織器材;2008年S2期
3 魏詩輝;李風(fēng)亭;李風(fēng)亭;張冰如;;靜電紡絲技術(shù)及其在水處理中的應(yīng)用[J];水處理技術(shù);2009年10期
4 李山山;何素文;胡祖明;于俊榮;陳蕾;諸靜;;靜電紡絲的研究進(jìn)展[J];合成纖維工業(yè);2009年04期
5 劉太奇;許遠(yuǎn)秦;操彬彬;陳曦;;熔體靜電紡絲及其裝置的研究進(jìn)展[J];新技術(shù)新工藝;2009年12期
6 薛花;熊杰;李妮;劉冠峰;;靜電紡絲工藝與裝置的研究進(jìn)展[J];現(xiàn)代紡織技術(shù);2010年02期
7 李鵬舉;李明忠;;絲素靜電紡絲技術(shù)的研究進(jìn)展[J];現(xiàn)代絲綢科學(xué)與技術(shù);2010年02期
8 郝明鳳;劉勇;鄧榮堅;丁玉梅;韓凌攀;楊衛(wèi)民;;典型材料的熔體靜電紡絲研究[J];工程塑料應(yīng)用;2010年03期
9 任春華;林朝陽;葉亞莉;;在靜電紡絲技術(shù)中的聚合物進(jìn)展[J];瀘天化科技;2010年02期
10 常會;范文娟;;靜電紡絲技術(shù)的研究及應(yīng)用[J];廣州化工;2011年21期
相關(guān)會議論文 前10條
1 溫賢濤;范紅松;譚言飛;曹紅丹;張興棟;;兩種靜電紡絲組織工程支架性能的比較研究[A];2004年中國材料研討會論文摘要集[C];2004年
2 朱晶心;邵惠麗;胡學(xué)超;;高濃度再生絲素蛋白水溶液的靜電紡絲[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(下冊)[C];2006年
3 馮亞凱;孟繁茹;;聚碳酸酯聚氨酯生物材料的靜電紡絲[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
4 王策;;高性能靜電紡絲納米纖維的應(yīng)用研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
5 仰大勇;馬宏偉;;靜電紡絲與蛋白質(zhì)微陣列[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
6 劉雍;壽萬;董亮;王瑞;;氣泡靜電紡絲技術(shù)的原理及其纖維形貌研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第04分會場摘要集[C];2010年
7 張玉軍;陸春;陳平;李建豐;于祺;;溶劑在高壓靜電紡絲中的作用[A];2005年全國高分子學(xué)術(shù)論文報告會論文摘要集[C];2005年
8 萬玉芹;何吉歡;俞建勇;吳s,
本文編號:1965633
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1965633.html