高精度數(shù)控凸輪磨削的速度優(yōu)化與輪廓誤差補償
本文選題:數(shù)控凸輪磨削 + 輪廓誤差 ; 參考:《吉林大學》2017年博士論文
【摘要】:目前數(shù)控加工最大的問題就是過于依賴人工操作經(jīng)驗,加工效率低。本論文在吉林省科技廳項目(20150101031JC)“高精度數(shù)控凸輪磨削過程的速度優(yōu)化與輪廓誤差補償”的資助下,以數(shù)控凸輪磨削為研究對象,為實現(xiàn)磨削加工的最優(yōu)化和智能化為目標,展開以下幾方面的研究工作:第一,建立了數(shù)控凸輪磨削系統(tǒng)中傳動機構(gòu)的數(shù)學模型。在機理分析和非線性因素分析的基礎上,分別對X軸和C軸的傳動機構(gòu)建立了數(shù)學模型;并考慮到數(shù)控凸輪磨削中存在的重復問題,設計了基于擴張狀態(tài)觀測器的重復控制機械系統(tǒng),提高了兩個單軸伺服系統(tǒng)的跟蹤精度,也為數(shù)控磨削加工的優(yōu)化提供理論基礎。第二,在單軸精度保證的前提下,設計了基于重復學習控制的交叉耦合控制系統(tǒng)?紤]到兩個單軸即使精度得到提高,但仍然無法完全沒有跟蹤誤差,且存在滯后等問題,對輪廓誤差與伺服跟蹤誤差的幾何關系進行分析,建立了基于同步滯后控制策略的輪廓誤差模型;诖四P,開展了實時補償?shù)慕徊骜詈峡刂啤?紤]到輪廓誤差中的重復信號,設計了重復學習控制與PID控制相結(jié)合的交叉耦合控制器。數(shù)字仿真實驗結(jié)果證明了利用此控制器可以對輪廓誤差進行實時補償,使得輪廓精度得以提高。第三,提出一種數(shù)控磨床凸輪磨削的速度優(yōu)化控制方法。即使兩個單軸的動態(tài)特性良好,高速數(shù)控凸輪磨削依然會引起兩個軸的不同滯后,將導致輪廓誤差不可避免的超過規(guī)定的范圍帶。為解決這個問題,本文提出一種新的速度優(yōu)化方案。第一、導出了輪廓誤差與兩軸速度之間的數(shù)學關系,提出砂輪架相對于凸輪的相對速度概念,構(gòu)造了有關相對速度的參數(shù)方程;第二、構(gòu)造了一個有關于相對速度的指數(shù)型函數(shù)來優(yōu)化兩個單軸的速度使輪廓誤差盡可能的減小。所提出的速度優(yōu)化方案可以實現(xiàn)在凸輪升程斜率較大處,即凸輪敏感區(qū)域,速度降低,在升程變化緩慢處,提高速度。在保證效率的同時,提高磨削加工精度。與恒角速度磨削相對比,提出的速度優(yōu)化算法可以有效提高輪廓精度。并通過實際對三種凸輪片的加工實驗進一步來證明算法的有效性和可靠性。應用結(jié)果說明了輪廓誤差可以有效的控制在0.012mm里。第四,提出了基于GCTC(generalized cycle-to-cycle)控制的雙閉環(huán)控制方案。數(shù)控加工的凸輪輪廓只能在一個周期結(jié)束后才能得到真正的測量,即使過程中的測量可行,付出的代價也很大。針對這個問題,本文建立了基于GCTC的凸輪輪廓誤差的雙閉環(huán)控制。其中,內(nèi)環(huán)是利用本地控制器以保證跟蹤精度;外環(huán)利用GCTC反饋控制,將其作為內(nèi)環(huán)的一個優(yōu)化模塊以實時更新給定值。加工系統(tǒng)的等價動態(tài)模型可以通過內(nèi)環(huán)的基于擴張狀態(tài)觀測器的重復控制系統(tǒng)而獲得。論文給出了GCTC反饋控制系統(tǒng)穩(wěn)定的充要條件。通過對基于GCTC控制的數(shù)控磨削系統(tǒng)的仿真實驗來驗證了提出的控制方案的優(yōu)越性。第五,進一步提出了基于測量誤差的雙層優(yōu)化輪廓曲線誤差控制方案。在內(nèi)層應用基于重復控制的更新策略來提高可行性和收斂速度;從CTC控制和約束自適應中推導出的CTC誤差修正作為外層的優(yōu)化方案。兩層目標函數(shù)一致,雙層互相作用,內(nèi)層作為外層的反饋,外層作為內(nèi)層的指導。仿真實驗結(jié)果證明了其有效性。
[Abstract]:At present, the biggest problem of NC machining is relying too much on manual operation experience and low processing efficiency. In this paper, under the support of "speed optimization and contour error compensation of high precision CNC cam grinding process" in the Jilin science and Technology Department (20150101031JC) project, CNC cam grinding is used as the research object, and the optimization of grinding process is realized. The following research work is carried out in the following aspects: first, the mathematical model of the transmission mechanism in the CNC cam grinding system is set up. On the basis of the mechanism analysis and the nonlinear factor analysis, the mathematical model of the transmission mechanism of the X axis and the C axis is established, and the repeated problems in the CNC cam grinding are taken into consideration. The repetitive control mechanical system based on the extended state observer improves the tracking accuracy of two single axis servo systems and provides a theoretical basis for the optimization of CNC grinding machining. (second) a cross coupling control system based on repeated learning control is designed under the premise of single axis precision guarantee. The accuracy of two single axes is considered. To improve, but still can not complete no tracking error, and there is a lag and other problems, the geometric relationship between the contour error and the servo tracking error is analyzed, and the contour error model based on the synchronization lag control strategy is established. Based on this model, the real-time compensation cross coupling control is carried out. A cross coupling controller combined with repetitive learning control and PID control is designed. The results of digital simulation prove that the contour error can be compensated in real time by using this controller, and the contour precision can be improved. Third, a speed optimization control method for cam grinding of CNC grinding machine is proposed. Even the dynamic characteristics of two single axes are presented. Well, the grinding of high-speed CNC cam will still cause different lag of the two axes, which will lead to the inevitable contour error exceeding the prescribed range. In order to solve this problem, a new speed optimization scheme is proposed in this paper. First, the mathematical relationship between the contour error and the velocity of the two axis is derived, and the phase of the grinding wheel frame relative to the cam is proposed. For the concept of speed, a parameter equation about relative velocity is constructed. Second, an exponential function with relative velocity is constructed to optimize the speed of two uniaxial forces to minimize the contour error. The proposed speed optimization scheme can be achieved in the higher slope of the cam lift, that is, the cam sensitive area, the speed decrease, and the increase of the speed. At the same time, the speed is improved. While the efficiency is ensured, the grinding precision is improved. Compared with the constant angular velocity grinding, the proposed speed optimization algorithm can effectively improve the contour precision. The efficiency and reliability of the algorithm are further proved by the processing experiments of the three kinds of cam sheets. The application results show the outline error. The difference can be effectively controlled in 0.012mm. Fourth, a double closed loop control scheme based on GCTC (generalized cycle-to-cycle) control is proposed. The cam profile of NC machining can only be measured at the end of one cycle. Even if the measurement is feasible in the process, the cost is very high. The double closed loop control of the cam profile error based on GCTC. The inner loop is used to ensure the tracking accuracy, and the outer ring uses the GCTC feedback control to use it as an optimization module of the inner loop to update the given value in real time. The equivalent dynamic model of the machining system can be controlled by the repeated control of the inner loop based on the extended state observer. The paper gives the necessary and sufficient conditions for the stability of the GCTC feedback control system. The superiority of the proposed control scheme is verified by the simulation experiment on the CNC grinding system based on GCTC control. Fifth, the double layer optimized contour error control scheme based on the measurement error is further proposed. The application based on the duplication is based on the internal layer. The updated strategy is controlled to improve the feasibility and convergence speed; the CTC error correction derived from the CTC control and the constraint adaptation is used as the optimization scheme for the outer layer. The two layer objective function is consistent, the double layer interaction, the inner layer as the outer layer feedback, the outer layer as the inner guide. The simulation results prove its effectiveness.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TG596
【相似文獻】
相關期刊論文 前10條
1 李培新;馬躍;于東;王志成;韓旭;;一種實時輪廓誤差估算方法[J];中國機械工程;2011年04期
2 張福榮;李志梅;鄧朝結(jié);;利用伺服系統(tǒng)的前饋功能消除輪廓誤差[J];農(nóng)業(yè)機械;2005年06期
3 孫濤;劉強;;輪廓誤差補償方法研究[J];機床與液壓;2010年09期
4 畢磊;肖本賢;于海濱;郁伉;;基于一次指數(shù)平滑模型預測的輪廓誤差補償方法[J];合肥工業(yè)大學學報(自然科學版);2010年08期
5 滕福林;李宏勝;溫秀蘭;黃家才;;電子齒輪比對輪廓誤差及加工效率影響的研究[J];中國機械工程;2012年13期
6 楊永;;基于齒隙的新型圓弧獨立輪廓誤差交叉耦合控制[J];機械;2010年08期
7 霍彥波;丁杰雄;謝東;杜麗;王偉;;五軸數(shù)控機床轉(zhuǎn)動軸與平動軸聯(lián)動的輪廓誤差仿真分析[J];組合機床與自動化加工技術;2012年03期
8 胡楚雄;王慶豐;姚斌;;基于全局任務坐標系的精密輪廓運動控制研究[J];機械工程學報;2012年20期
9 李雷;;西門子數(shù)控機床輪廓誤差及參數(shù)調(diào)整補償[J];科技創(chuàng)業(yè)家;2013年06期
10 過慶琪;消除數(shù)控加工輪廓誤差的一種方法[J];制造技術與機床;2000年01期
相關博士學位論文 前6條
1 謝東;數(shù)控機床工作精度檢驗中的運動控制指標作用機理研究[D];電子科技大學;2015年
2 王靜;高精度數(shù)控凸輪磨削的速度優(yōu)化與輪廓誤差補償[D];吉林大學;2017年
3 鄭浩;雙軸運動平臺精密輪廓跟蹤控制策略研究[D];沈陽工業(yè)大學;2015年
4 李啟光;凸輪磨削輪廓誤差機理及精度提高方法研究[D];機械科學研究總院;2014年
5 孫建仁;CNC系統(tǒng)運動平滑處理與輪廓誤差研究[D];蘭州理工大學;2012年
6 江磊;復雜零件五軸加工輪廓誤差控制技術研究[D];西南交通大學;2014年
相關碩士學位論文 前10條
1 陳嘉瑩;基于輪廓誤差的高速加工速度規(guī)劃與控制[D];哈爾濱工業(yè)大學;2013年
2 張秋杰;數(shù)控機床定位誤差補償及其對圓輪廓誤差影響分析[D];廣西大學;2015年
3 王泠;曲率急變輪廓分區(qū)域變進給速度加工技術研究[D];大連理工大學;2015年
4 周江鵬;雙軸伺服系統(tǒng)的輪廓誤差估計和交叉耦合控制研究[D];哈爾濱工業(yè)大學;2015年
5 劉晨希;多軸數(shù)控機床輪廓誤差模型及耦合控制方法研究[D];山東理工大學;2015年
6 邵泳萁;多軸伺服進給系統(tǒng)的輪廓誤差估計與控制研究[D];哈爾濱工業(yè)大學;2016年
7 莊丙遠;雙轉(zhuǎn)臺五軸聯(lián)動數(shù)控機床運動學模型及輪廓誤差補償控制研究[D];山東理工大學;2016年
8 劉洪珍;基于神經(jīng)網(wǎng)絡的直線電機輪廓誤差控制技術研究[D];合肥工業(yè)大學;2016年
9 李奔;葉片修復焊接機床機電聯(lián)合仿真及輪廓誤差控制[D];中國民航大學;2015年
10 陳劍;基于輪廓誤差控制的進給率定制方法研究[D];大連理工大學;2016年
,本文編號:1960889
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1960889.html