基于自養(yǎng)反硝化工藝處理低有機(jī)碳水中硝酸鹽技術(shù)研究
發(fā)布時(shí)間:2018-05-31 08:43
本文選題:硝酸鹽 + 電極強(qiáng)化生物膜; 參考:《中國(guó)地質(zhì)大學(xué)(北京)》2017年博士論文
【摘要】:硝酸鹽(NO_3~-)是陸地生態(tài)系統(tǒng)中最常見(jiàn)的污染物之一,隨著社會(huì)的發(fā)展和城市化進(jìn)程的加速,NO_3~-污染已成為地表水和地下水生態(tài)系統(tǒng)中一個(gè)嚴(yán)重的環(huán)境問(wèn)題。為了使生物反硝化方法更有效地應(yīng)用于低有機(jī)碳水的NO_3~-去除過(guò)程中,在前人對(duì)自養(yǎng)反硝化技術(shù)研究的基礎(chǔ)上,本研究針對(duì)低有機(jī)碳源的地下水及硝化生活污水,分別開(kāi)發(fā)出適用的電極強(qiáng)化生物膜自養(yǎng)-異養(yǎng)協(xié)同反硝化方法和硫鐵礦顆粒自養(yǎng)反硝化方法,為低有機(jī)碳水的生物脫氮提供了新途徑。本研究首先構(gòu)建電極強(qiáng)化生物膜自養(yǎng)-異養(yǎng)協(xié)同反硝化反應(yīng)器(BER-AHD),分別在固定和變化C/N條件下確定反應(yīng)所需最佳電流密度,并利用中心組合設(shè)計(jì)(CCD)和響應(yīng)曲面法分析(RSM),確定反應(yīng)器的最適C/N和電流密度分別為1.13和239.6 mA/m2,且在該條件下NO_3~--N去除率可達(dá)到100%。在此基礎(chǔ)上,利用最大可能數(shù)計(jì)數(shù)(MPN)方法,確定反應(yīng)器內(nèi)自養(yǎng)和異養(yǎng)反硝化細(xì)菌的含量分別為2.0×103和2.0×105個(gè)/mL;并通過(guò)分析溶解態(tài)CO2及COD濃度,證明反應(yīng)器內(nèi)自養(yǎng)與異養(yǎng)反硝化菌具有協(xié)同關(guān)系,即異養(yǎng)反硝化過(guò)程產(chǎn)生的CO2,可以用作自養(yǎng)反硝化過(guò)程的無(wú)機(jī)碳源,且CO2的利用又促進(jìn)了異養(yǎng)反硝化的進(jìn)行。相比于傳統(tǒng)的電極生物膜技術(shù),本研究不僅可提高去效率、減少有機(jī)碳源添加量,而且能夠有效地提高氫氣利用率,降低能耗。由于BER-AHD陽(yáng)極易腐蝕,且處理后出水中含有一定量的NH4+-N,故而該工藝較適用于低有機(jī)碳的地下水NO_3~-處理,并不適用于含有殘留NH4+的硝化生活污水的處理,因此,針對(duì)硝化生活污水的處理問(wèn)題,本研究通過(guò)微生物培養(yǎng)馴化批實(shí)驗(yàn),確定硫鐵礦顆粒自養(yǎng)反硝化(PPAD)的反硝化速率為0.86 mg/(L·h),低于單質(zhì)硫氧化反硝化(SOD)速率1.19 mg/(L·h)。在此基礎(chǔ)上,構(gòu)建上流式固定床反應(yīng)器對(duì)PPAD和SOD性能進(jìn)行對(duì)比研究,結(jié)果表明,在空床接觸時(shí)間(EBCT)為2.9 h時(shí),平均NO_3~--N去除率分別為39.7%和99.9%;雖然本研究中PPAD柱的反硝化速率較低,但堿度消耗和副產(chǎn)物生成量均低于SOD,具有很好的應(yīng)用潛力。進(jìn)而,本研究采用模擬實(shí)際硝化生活污水,通過(guò)批實(shí)驗(yàn)和柱實(shí)驗(yàn)對(duì)PPAD進(jìn)行性能優(yōu)化研究。批實(shí)驗(yàn)結(jié)果表明,PPAD培養(yǎng)瓶在硫鐵礦投加量125 g/L、生物質(zhì)濃度(VSS)1250 mg/L、硫鐵礦顆粒粒徑0.815~1.015mm時(shí),反硝化速率常數(shù)k最高,達(dá)到0.473 d-1。上流式固定床反應(yīng)器(柱實(shí)驗(yàn))研究結(jié)果顯示,在反應(yīng)器EBCT為5.8 h時(shí),硫鐵礦顆粒、石英砂和牡蠣殼(P+S+OS)填充柱的總無(wú)機(jī)氮(TIN)去除率為89.7%,而硫鐵礦顆粒和石英砂(P+S)填充柱為70.1%,證明牡蠣殼的添加有助于PPAD脫氮性能的提升,同時(shí)對(duì)副產(chǎn)物的分析得知,混合營(yíng)養(yǎng)型反硝化是導(dǎo)致P+S+OS填充柱高TIN去除率的主要原因。本研究所開(kāi)發(fā)的BER-AHD與PPAD生物脫氮技術(shù),可適用于不同低有機(jī)碳水中NO_3~-處理,并提出了利用以自養(yǎng)生物反硝化技術(shù)為基礎(chǔ)的組合工藝處理不同污染水中NO_3~-的新思路。
[Abstract]:With the development of society and the acceleration of urbanization, the pollution has become a serious environmental problem in the surface water and groundwater ecosystem. In order to make the biological denitrification method more effective in the process of NO3C removal of low organic carbon water, based on the previous researches on autotrophic denitrification technology, this study was aimed at the groundwater and nitrified domestic sewage from low organic carbon source. The methods of electrode enhanced biofilm autotrophic and heterotrophic synergistic denitrification and pyrite particle autotrophic denitrification have been developed respectively which provide a new way for biological denitrification of low organic carbon water. In this study, the electrode enhanced biofilm autotrophic and heterotrophic synergistic denitrification reactor (BER-AHDN) was constructed, and the optimum current density for the reaction was determined under the condition of fixation and variation of C / N, respectively. The optimum C / N and current density of the reactor were 1.13 and 239.6 Ma / m ~ (2), respectively, and the removal rate of NO_3~--N could reach 100% under these conditions. On the basis of this, the contents of autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria were determined to be 2.0 脳 10 ~ 3 and 2.0 脳 10 ~ 5 / mL, respectively, and the concentrations of dissolved CO2 and COD were analyzed by the method of maximum possible number counting (MPN). The results showed that autotrophic and heterotrophic denitrifying bacteria had a synergistic relationship, that is, CO _ 2 produced by heterotrophic denitrification process could be used as inorganic carbon source in autotrophic denitrification process, and the utilization of CO2 promoted heterotrophic denitrification. Compared with the traditional electrode biofilm technology, this study can not only improve the removal efficiency, reduce the amount of organic carbon source, but also effectively improve the hydrogen utilization rate and reduce energy consumption. Because the BER-AHD anode is easy to corrode and there is a certain amount of NH4 -N in the effluent after treatment, the process is more suitable for the treatment of low organic carbon groundwater NOS3, and is not suitable for the treatment of nitrified domestic sewage containing residual NH4. According to the treatment of nitrified domestic sewage, the experiment of microbial culture and acclimation showed that the denitrification rate of pyrite particle autotrophic denitrification (PPAD) was 0.86 mg/(L / h, which was lower than that of elemental sulfur oxidation denitrification (SOD) rate of 1.19 mg/(L / h. On this basis, the upflow fixed-bed reactor was constructed to compare the performance of PPAD and SOD. The results showed that the average removal rate of NO_3~--N was 39.7% and 99.9%, respectively, when the empty bed contact time was 2.9 h, although the denitrification rate of PPAD column was lower in this study. However, alkalinity consumption and by-product production are lower than SOD, which has good application potential. Furthermore, the performance of PPAD was optimized by batch experiment and column experiment. The results of batch experiment showed that the denitrification rate constant k was the highest at 0.473 d ~ (-1), when the dosage of pyrite was 125g / L, the concentration of biomass was 1250mg / L, and the particle size of pyrite was 0.815~1.015mm. The results of upflow fixed-bed reactor (column experiment) showed that when the EBCT of the reactor was 5.8 h, the pyrite particles could be obtained. The removal rate of total inorganic nitrogen was 89.7 for quartz sand and oyster shell PS filled column, and 70.1 for pyrite particle and quartzite sand filled column. It is proved that the addition of oyster shell can improve the nitrogen removal performance of PPAD, and the by-product analysis shows that the addition of oyster shell can improve the denitrification performance of Oyster Shell. Mixed nutrient denitrification is the main cause of high TIN removal rate in P S OS filled column. The biological denitrification technology of BER-AHD and PPAD developed in this paper can be applied to the treatment of NO3- in different low organic carbon water, and a new idea of treating NO3- in different polluted water by the combined process based on autotrophic biological denitrification is put forward.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧旭亮;王愛(ài)杰;榮麗麗;肖勇;王禎華;;硫自養(yǎng)反硝化技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J];工業(yè)水處理;2008年03期
2 聶曉雪;蔣進(jìn)元;王勇;周岳溪;李素芹;;生物循環(huán)流化床工藝自養(yǎng)反硝化研究[J];環(huán)境科學(xué)研究;2008年04期
3 張彥浩;楊寧;謝康;劉建廣;亓華;;自養(yǎng)反硝化技術(shù)研究進(jìn)展[J];化工環(huán)保;2010年03期
4 袁瑩;周偉麗;王暉;;不同載體條件的硫自養(yǎng)反硝化脫氮試驗(yàn)[J];凈水技術(shù);2012年06期
5 李天昕;邱誠(chéng)翔;徐昊;谷為民;;硫/石灰石自養(yǎng)反硝化處理低碳高氮城市污水的工藝[J];環(huán)境工程學(xué)報(bào);2014年03期
6 阮峗杰;譚洪新;羅國(guó)芝;王晨堯;車軒;孫大川;;硫自養(yǎng)反硝化對(duì)含鹽水體脫氮及其動(dòng)力學(xué)模型[J];農(nóng)業(yè)工程學(xué)報(bào);2009年02期
7 王弘宇;楊開(kāi);張倩;季斌;陳丹;孫宇,
本文編號(hào):1959009
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1959009.html
最近更新
教材專著