玉米秸稈纖維素及玉米磷酸酯淀粉基可食膜的研究
發(fā)布時間:2018-05-18 12:19
本文選題:玉米秸稈纖維素 + 玉米磷酸酯淀粉; 參考:《吉林大學》2017年博士論文
【摘要】:本文是國家科技支撐計劃項目(2015BAD16B05)“防腐保鮮新型物流包裝材料開發(fā)”和吉林省教育廳“十三五”科學技術研究規(guī)劃項目(JJKH20170435KJ)“玉米秸稈微納纖維素抗菌、可降解包裝材料的制備及其在長白山山野菜保鮮中的應用”的部分研究內(nèi)容。本文以玉米秸稈為原料,優(yōu)化了玉米秸稈纖維素(CSC)和玉米秸稈納米纖維素(NCSC)的制備工藝,并將CSC和NCSC應用到玉米磷酸酯淀粉(CDP)基可食膜中,研究了超聲波-微波協(xié)同作用對可食膜性能的影響;在此基礎上,優(yōu)化了干式復合法制備玉米磷酸酯淀粉基和玉米醇溶蛋白基雙層復合可食膜(C/Z膜)的工藝,并對可食膜的結構和性質(zhì)進行了表征和分析;進一步研究了玉米磷酸酯淀粉基抑菌可食膜的抑菌性能,并將其應用到集安白桃的涂膜保鮮中。研究結果如下:(1)以玉米秸稈為原料,采用單因素試驗和響應面試驗確定了制備CSC和NCSC的最佳工藝條件。超聲輔助堿法制備CSC的最佳工藝條件為:Na OH質(zhì)量濃度8.7g/100m L、液料比16:1(m L/g)、超聲功率180 W、超聲時間96 min,CSC得率為35.19%。超聲輔助硫酸水解制備NCSC的最佳工藝條件為:硫酸體積分數(shù)64%、超聲功率160 W、酸解溫度48℃、酸解時間78 min,NCSC得率為38.29%。與CSC相比,NCSC的粒徑減小,達到納米級別;NCSC的L值、a值明顯增大(p0.05),b值明顯降低(p0.05),NCSC更加潔白、細膩,對光的反射增強,吸水膨脹力顯著增加(p0.05),持水力顯著降低(p0.05)。傅立葉變換紅外光譜(FTIR)分析表明,硫酸水解去除了半纖維素和木質(zhì)素成分,NCSC仍保持著CSC的基本化學結構。X射線衍射(XRD)分析表明,CSC和NCSC的晶體類型基本一致,NCSC的衍射峰更加尖銳和細窄,強度增加,NCSC的結晶度顯著提高(p0.05)。熱失重(TGA)分析表明,NCSC熱分解溫度比CSC略低,CSC和NCSC的熱分解溫度均超過200℃,二者均具有較好的熱穩(wěn)定性。(2)以CDP和CSC作為成膜基材,通過共混流延方法制備可食膜。采用主成分分析法和響應面試驗優(yōu)化得到可食膜的最佳制備工藝參數(shù)為:CDP-CSC質(zhì)量比8.5:1.5,CMC質(zhì)量濃度0.8 g/100 m L、Gly質(zhì)量濃度1.0 g/100 m L,可食膜性能綜合分為0.737,對應可食膜抗拉強度(TS)、斷裂伸長率(EAB)、水蒸氣透過系數(shù)(WVP)、氧氣透過率(OP)和透光率(LT)分別為19.75 MPa、46.89%、1.167×10-12 g/(cm·s·Pa)、2.78×10-2g/(m2·d·Pa)和41.86%,添加CSC可以改善可食膜的機械性能,阻隔性能和透光性。利用超聲波-微波協(xié)同改性處理,可以改善CDP/CSC膜的機械性能、阻隔性能和透光性。FTIR和XRD分析表明,經(jīng)過超聲波-微波協(xié)同處理后的CDP/CSC膜各組分分子間產(chǎn)生了較強的相互作用,改善了膜的性能。SEM分析表明,通過超聲波-微波協(xié)同處理的CDP/CSC膜表面更光滑平整,截面致密有序,提高了共混體系的相容性。(3)采用超聲波-微波協(xié)同改性制備玉米磷酸酯淀粉/秸稈納米纖維素/聚乙二醇(PEG)可食膜(P-CDP/NCSC)。結果表明,通過添加NCSC和PEG,使可食膜的TS和EAB均有不同程度的提高,其中P-CDP/NCSC可食膜的TS和EAB分別達到最大值39.47 MPa和135.75%;CSC、NCSC和PEG的加入亦可有效提高CDP可食膜的阻隔性能,使WVP和OP顯著降低(p0.05)。FTIR和XRD分析表明,CSC、NCSC、PEG的添加使膜分子間的氫鍵作用加強,CDP/NCSC膜的具有更高的結晶性,而PEG的加入,則改善了膜的韌性和相容性。TGA分析表明,CSC和NCSC可提高可食膜的熱穩(wěn)定性。SEM分析表明,添加NCSC對于形成均勻、連續(xù)、致密的膜結構具有更好的作用。(4)采用主成分分析法和響應面試驗優(yōu)化得到干式復合法制備玉米磷酸酯淀粉基和玉米醇溶蛋白基雙層復合可食膜(C/Z膜)的最佳制備工藝參數(shù)為:C膜:Z膜6:4,熱壓溫度135℃、熱壓次數(shù)3次,C/Z膜性能綜合分為0.729,對應TS、EAB、WVP、OP和LT分別為39.96 MPa、61.35%、0.4526×10-12 g/(cm·s·Pa)、0.8649×10-2 g/(m2·d·Pa)和43.63%。C/Z膜與CDP/NCSC膜和P-CDP/NCSC膜相比,TS提高,EAB和LT下降,阻濕、阻氧性能增強。FTIR分析表明,Z膜中的羥基、羰基、氨基與C膜中的羥基、羰基、雙鍵等活性基團之間產(chǎn)生了較強的氫鍵締合,C/Z膜仍保留著C膜的基本結構。XRD分析表明,C/Z膜的衍射峰強度明顯高于C膜,結晶度提高。TGA分析表明,C/Z膜的最大熱降解溫度305.57℃,高于C膜的最大熱降解溫度294.18℃,C/Z膜比C膜的熱穩(wěn)定性能提高。宏觀形貌和SEM分析表明,C膜、Z膜和C/Z膜的表面均較光滑,無明顯的顆粒、褶皺及孔洞,并具有良好的透明性和韌性;C/Z膜表現(xiàn)為雙層致密的截面結構,無明顯的相分離現(xiàn)象。(5)玉米磷酸酯淀粉基抑菌可食膜的抑菌性能研究表明,乳酸鏈球菌素(Nisin)添加到可食膜中,可有效抑制革蘭氏陽性細菌(金黃色葡萄球菌、枯草芽孢桿菌)的生長繁殖,隨著Nisin添加量的增大,可食膜對大腸桿菌的抑制作用和黑曲霉菌絲的生長抑制率明顯提高。Nisin和ε-聚賴氨酸(ε-PL)復合使用時,可產(chǎn)生協(xié)同抑菌效應,不僅對革蘭氏陽性菌有良好的抑菌效果,而且可使其對革蘭氏陰性菌的抑菌效果增強;同時使可食膜對黑曲霉菌絲的生長抑制率明顯提高。(6)將玉米磷酸酯淀粉基可食膜應用在集安白桃涂膜保鮮中,結果表明,經(jīng)涂膜保鮮處理的集安白桃樣品感官品質(zhì)、失重率、褐變指數(shù)、硬度、可溶性固形物含量、可滴定酸含量、維生素C含量、丙二醛含量、過氧化物酶和多酚氧化酶活性等指標均優(yōu)于未涂膜處理的樣品。涂膜處理可在果實表面形成保護層,減少營養(yǎng)成分損失,延緩果實成熟;亦可抑制微生物對果實的侵染,防止果實腐爛,延長貯藏保鮮時間。
[Abstract]:This article is the national science and technology support program (2015BAD16B05) "the development of new logistics packaging materials for preservation and preservation" and the "13th Five-Year" science and technology research project (JJKH20170435KJ) of the Jilin Provincial Education Department (13th Five-Year) "corn straw micronanosilicon antibacterial, biodegradable packaging materials and its application in the preservation of Changbai Mountain wild vegetables" In this paper, the preparation technology of corn straw cellulose (CSC) and corn straw nanoscale (NCSC) was optimized with corn straw as raw material, and CSC and NCSC were applied to the edible film of corn phosphate starch (CDP) base, and the effects of ultrasonic and microwave co action on the performance of edible film were studied. On this basis, the optimization was made. A dry compound method was used to prepare the double composite edible film (C/Z film) of corn phosphate starch base and corn gliadin, and the structure and properties of the edible film were characterized and analyzed. The bacteriostasis performance of the edible film was further studied and applied to the preservation of the coating film of Ji'an white peach. The results are as follows: (1) the optimum technological conditions for the preparation of CSC and NCSC are determined by single factor test and response interview with corn straw as raw material. The optimum technological conditions for the preparation of CSC by ultrasonic assisted alkali method are as follows: Na OH mass concentration 8.7g/100m L, liquid ratio 16:1 (m L/g), ultrasonic power rate of 180 W, ultrasonic time 96 min, and the rate of ultrasonic assisted sulfur assisted sulfur The optimum conditions for the preparation of NCSC by acid hydrolysis are as follows: the volume fraction of sulfuric acid is 64%, the ultrasonic power is 160 W, the acid hydrolysis temperature is 48, the acid hydrolysis time is 78 min, the yield of NCSC is 38.29%. and CSC, the NCSC size decreases, and the NCSC's L value is obviously increased (P0.05), the b value is obviously reduced, and the reflection of the light is enhanced, The swelling power of water absorption increased significantly (P0.05) and the water holding capacity was significantly lower (P0.05). The Fu Liye transform infrared spectroscopy (FTIR) analysis showed that the hydrolysis of sulfuric acid removed the hemicellulose and lignin components. NCSC still maintained the basic chemical structure of CSC by.X ray diffraction (XRD) analysis, indicating that the crystal types of CSC and NCSC were basically the same, and the diffraction peak of NCSC was more sharp. The crystallinity of NCSC increased significantly (P0.05). The thermal weight loss (TGA) analysis showed that the thermal decomposition temperature of NCSC was slightly lower than that of CSC, and the thermal decomposition temperatures of CSC and NCSC were more than 200 degrees C, and all two had better thermal stability. (2) the edible film was prepared with CDP and CSC as film forming material by CO mixed flow extension method. The optimum preparation parameters of the edible film were as follows: CDP-CSC mass ratio 8.5:1.5, CMC mass concentration 0.8 g/100 m L, Gly mass 1 g/100 m L, the performance of edible film integrated into 0.737, corresponding to edible film tensile strength (TS), elongation at break (EAB), vapor transmission coefficient, oxygen transmittance and transmittance (LT) is 19.75 MPa, 46.89%, 1.167 * 10-12 g/ (cm. S. Pa), 2.78 * 10-2g/ (m2. D. Pa) and 41.86%. Adding CSC can improve the mechanical properties, barrier properties and light transmittance of the edible film. Strong interaction was produced among the components of CDP/CSC film after the sound wave microwave CO treatment. The performance of the membrane was improved by.SEM analysis. The surface of the CDP/CSC membrane was smooth and smooth through the ultrasonic wave microwave CO treatment. The compatibility of the blend system was improved. (3) the co modification of Maize by ultrasonic wave and microwave was used to prepare the corn. Phosphate starch / straw nanoscale / polyethylene glycol (PEG) edible film (P-CDP/NCSC). The results showed that the TS and EAB of the edible film were improved in varying degrees by adding NCSC and PEG, and the TS and EAB of the P-CDP/NCSC edible film reached the maximum value of 39.47 MPa and 135.75% respectively. WVP and OP decreased significantly (P0.05).FTIR and XRD analysis showed that the addition of CSC, NCSC, and PEG enhanced the hydrogen bond between the membrane molecules, and the CDP/NCSC film had a higher crystallinity. The addition of PEG improved the.TGA analysis of the toughness and compatibility of the membrane. NCSC has a better effect on the formation of uniform, continuous and dense membrane structures. (4) the optimum preparation parameters of the dry compound method for preparing corn phosphate starch base and zein bilayer composite edible film (C/Z film) are optimized by principal component analysis and response surface test. The optimum preparation parameters are as follows: C film: Z membrane 6:4, hot pressing temperature 135, hot press 3 times, the performance of C/Z membrane was divided into 0.729, corresponding to TS, EAB, WVP, OP and LT, respectively 39.96 MPa, 61.35%, 0.4526 x 10-12 g/ (cm s. Pa), 0.8649 * 10-2 g/. The active groups such as hydroxyl group, carbonyl group and double bond produced strong hydrogen bond association. The C/Z film still retained the basic structure of C film.XRD analysis showed that the diffraction peak intensity of C/Z film was obviously higher than that of C film. The crystallization degree of.TGA analysis showed that the maximum thermal degradation temperature of C/Z film was 305.57, higher than the maximum thermal degradation temperature of C film, and C/Z film was higher than C. The thermal stability of the membrane was improved. The macro morphology and SEM analysis showed that the surface of C film, Z film and C/Z film were smooth, without obvious particles, folds and holes, and had good transparency and toughness. The C/Z film showed a double dense cross section structure and no obvious phase separation. (5) the antibacterial properties of the edible film of corn phosphate starch based bacteriostasis The results showed that the addition of Nisin to the edible film could effectively inhibit the growth and reproduction of Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis). With the increase of the amount of Nisin, the inhibitory effect of the edible film on Escherichia coli and the growth inhibition rate of Aspergillus niger mycelium increased significantly by.Nisin and epsilon (epsilon). PL) combined use, can produce synergistic bacteriostasis effect, not only have good bacteriostasis effect on Gram-positive bacteria, but also enhance the bacteriostasis effect of Gram-negative bacteria, and increase the growth inhibition rate of edible film to Aspergillus niger. (6) the application of corn phosphate starch based edible film to the preservation of Ji'an white peach film The results showed that the weight loss rate, browning index, hardness, soluble solid content, titratable acid content, vitamin C content, malondialdehyde content, peroxidase and polyphenol oxidase activity were superior to those without film treatment in Ji'an white peach samples treated with film preservation. The protection layer can reduce loss of nutrients, delay fruit ripening, inhibit microbial infection of fruits, prevent fruit decay and prolong storage time.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TS206.4
【相似文獻】
相關期刊論文 前10條
1 郭卓q;磷酸酯淀粉的制法及應用[J];糧油食品科技;1990年02期
2 王天一;;磷酸酯淀粉應用機理淺析[J];四川造紙;1991年02期
3 楊駕輝;磷酸酯淀粉的應用[J];精細化工;1993年03期
4 于浩;;磷酸酯淀粉的生產(chǎn)及應用[J];適用技術市場;1997年07期
5 王大為,張艷榮,張雁南;磷酸酯淀粉在冰淇淋中的增稠穩(wěn)定作用[J];吉林農(nóng)業(yè)大學學報;2003年03期
6 顏曉青;倪春鋒;;磷酸酯淀粉的性能分析[J];紡織科技進展;2005年06期
7 賴俐超;;香芋淀粉磷酸酯的研制[J];化學世界;2006年04期
8 莊文剛;喬旭光;;玉米磷酸酯淀粉的制作及其在姜膏生產(chǎn)中的應用[J];食品科學;2007年04期
9 趙前程;謝智芬;劉俊榮;金橋;汪秋寬;顧光珍;白鶴;王,
本文編號:1905808
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1905808.html
教材專著