天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程博士論文 >

電化學聚合制備基于導電聚合物的高能量密度超級電容器電極與器件

發(fā)布時間:2018-05-17 03:13

  本文選題:超級電容器 + 導電聚合物 ; 參考:《吉林大學》2017年博士論文


【摘要】:從上世紀50年代見報于專利,到現(xiàn)在應用到全世界多個國家和地區(qū)的公共交通設施,短短幾十年間,超級電容器經(jīng)歷了迅猛蓬勃的發(fā)展。隨著近年來新能源汽車以及智能電子設備的普及,超級電容器有了更加廣闊的發(fā)展空間。作為一種橋接普通電容器和蓄電池的電子器件,超級電容器具有介于上述兩者之間的能量密度和功率密度。其用途廣泛,可以在車輛制動過程中回收能量,并將其釋放用于車輛加速;在啟停系統(tǒng)中提供啟動電源和穩(wěn)定電壓,為關鍵汽車應用提供后備電源和峰值功率;在智能電網(wǎng)系統(tǒng)中,削峰填谷,提升電網(wǎng)的可靠性和穩(wěn)定性。超級電容器已經(jīng)成為了很多領域重要的能源想選擇方案。隨著人們對其需求日益提升,超級電容器較低的能量密度成為其進一步發(fā)展的阻礙。目前商用的超級電容器主要采用碳基材料,其能量密度不超過10 Wh kg-1。導電聚合物由于儲存電荷密度高、成本低廉、易于加工且兼具柔性等優(yōu)點,被認為是非常有應用前景的一類超級電容器電極材料。但是,基于導電聚合物的超級電容器飽受功率密度低以及循環(huán)不穩(wěn)定等問題的困擾。另外,其儲存的能量密度取決于摻雜水平的高低,而常見的導電聚合物的摻雜度一般在為0.3-0.5之間,過高的摻雜度引起材料的不穩(wěn)定從而導致能量密度無法進一步提升。在此背景下,我們從電極材料的合成以及新型電解質(zhì)的設計角度出發(fā),旨在通過簡單有效的手段,在不犧牲功率密度的前提下,提升導電聚合物基超級電容器的能量密度,并尋求解決循環(huán)不穩(wěn)定問題的途徑。1、在第二章中我們制備了兩種新型共軛微孔聚合物的電化學聚合薄膜,并首次用作贗電容的電極材料。這些薄膜電極材料的獨特性在于,它們兼具共軛聚合物的優(yōu)良導電性和微孔聚合物的豐富孔結構。這些特點在其超級電容性能上得到很好的展示:基于聚zn-mtcpp的贗電容電極材料的比電容值為142fg-1,基于聚bthcz的贗電容電極材料的比電容值為246fg-1,這些數(shù)值在文獻報道的純導電聚合物基電極材料中屬于較高水平。得益于其高度交聯(lián)的網(wǎng)絡骨架和豐富的孔道,離子在電極材料表面可以快速地傳輸,使得兩電極材料在高電流密度下均表現(xiàn)出良好的倍率穩(wěn)定性,其中聚bthcz薄膜電極在100ag-1的高電流密度,仍然保持了93%的最大比電容。實驗結果證明,電化學聚合新型的共軛微孔聚合物薄膜,為超級電容器提供了除傳統(tǒng)導電聚合物如聚苯胺、聚吡咯和聚噻吩以外更多的電極材料選擇。鑒于其結構的多樣性和設計的靈活性,更多的共軛微孔聚合物薄膜電極材料會被開發(fā)出來,進一步加深我們對導電聚合物以及超級電容器的認識。2、在第三章中我們設計制備了兩種具有不同連接方式的d-a構型的雙極性摻雜導電聚合物電極材料,并深入研究了結構對其聚合行為、摻雜行為以及超級電容性能的影響。pczaqcz與paq3cz兩電極材料制備的原型超級電容器器件的最大電壓分別達到2.4v和2v。寬的電位窗口帶來器件能量密度和功率密度的大幅提升,其中paq3cz器件的最大能量密度為19.5whkg-1(功率密度為1.2kwkg-1),最大功率密度為12.2kwkg-1(能量密度為16.4whkg-1);pczaqcz器件的最大能量密度為29.1whkg-1(功率密度為1.3kwkg-1),最大功率密度為11.8kwkg-1,(能量密度為23.3whkg-1),遠高于商用的超級電容器的數(shù)值水平,體現(xiàn)了雙極性摻雜材料的優(yōu)越性。同時,我們深入探討了影響iii類超級電容器循環(huán)穩(wěn)定性的電荷捕陷效應。結果表明,循環(huán)充放電實驗過程中,n摻雜電極嚴重的電荷捕陷效應是造成電極材料以及器件衰退的主要原因。paq3cz由于具有拓展的共軛結構,以及疏松的表面結構,有效地降低了n摻雜時的電荷捕陷效應,表現(xiàn)了優(yōu)良的循環(huán)穩(wěn)定性。另外,電荷捕陷效應導致的n摻雜活性的衰退被證明可以通過有限次數(shù)循環(huán)伏安掃描得到部分或幾乎全部恢復,從而一定程度上延長器件的使用壽命。3、在第四章中我們首次探索了兩種可用于有機電解液的氧化還原介質(zhì)Fc和4-oxo TEMPO,兩者具有非?焖倏赡娴难趸原反應。在此基礎上,我們制備了柔性的有機凝膠電解質(zhì)和全固態(tài)超級電容器器件。受益于有機凝膠電解質(zhì)的寬電壓和氧化還原介質(zhì)額外的法拉第電容,PEDOT作為電極材料的超級電容器的工作電壓拓寬到1.5 V,比電容最高達到363 F g-1,能量密度達到27.4 Wh kg-1。證明在電解質(zhì)中添加氧化還原介質(zhì)是一種簡單、普適、高效地提升超級電容器比電容以及能量密度的手段。在提升能量密度的同時,這些氧化還原介質(zhì)還通過與PEDOT電極材料的協(xié)同作用,顯著提高了超級電容器充放電循環(huán)穩(wěn)定性。此外,兩種具有氧化還原活性的有機凝膠電解質(zhì)還可應用于基于其他電極材料如碳系、金屬氧化物和其他導電聚合物的柔性、全固態(tài)超級電容器器件。同時,更多的可以用于有機電解液的氧化還原介質(zhì)還有待被開發(fā)探索。綜合有機電解液的寬窗口優(yōu)勢和氧化還原介質(zhì)豐富的法拉第電容優(yōu)勢,超級電容器的能量密度有望得到大幅提升,甚至可以與電池相媲美。綜上所述,在本論文中我們通過引入豐富的孔結構以及功能化的氧化還原基團,設計合成了新型的導電聚合物電極材料;制備了柔性的全固態(tài)超級電容器器件,又制備了具有氧化還原活性的有機凝膠電解質(zhì)。這些對電極材料以及電解質(zhì)的改性和修飾,有效地提高的電極材料的比電容,提升了器件的能量密度和功率密度。此外通過結構和性質(zhì)的對比,我們深入分析了材料結構對其電容性能的影響,對認識導電聚合物的儲能過程和機理、拓展適用的材料體系起到了積極的促進作用。
[Abstract]:Since the 50s last century, it was reported to the patent, and is now applied to public transportation facilities in many countries and regions all over the world. In the past few decades, the supercapacitor has experienced rapid and vigorous development. With the popularity of new energy vehicles and intelligent electronic equipment in recent years, the supercapacitor has a wider space for development. As a bridge, it is a bridge. An electronic device connected to a common capacitor and battery. The supercapacitor has an energy density and a power density between the two. It is widely used to recover energy during vehicle braking and release it for vehicle acceleration. The power supply and stable voltage are provided in the start and stop system, and it is provided for key automotive applications. Power supply and peak power; in smart grid systems, peaking and filling the valley to improve the reliability and stability of the power grid. Supercapacitor has become an important energy choice in many fields. With the increasing demand for it, the lower energy density of supercapacitor has become a hindrance to its further development. Carbon based materials are mainly used in stage capacitors. Their energy density is not more than 10 Wh kg-1. conductive polymers. Due to the advantages of high storage charge density, low cost, easy processing and flexibility, it is considered a very promising type of supercapacitor electrode material. However, the supercapacitor based on conductive polymer is full of power density. In addition, the energy density of the storage depends on the level of doping, and the doping degree of the common conductive polymers is generally between 0.3-0.5, the high doping degree causes the instability of the material and the energy density can not be promoted. In this context, we are from the electrode material. The synthesis and the design of new electrolytes are designed to improve the energy density of the conductive polymer based supercapacitor without sacrificing the power density, and to find a way to solve the cyclic instability problem,.1. In the second chapter, we have prepared two new conjugated microporous polymers in the second chapter. Polymeric films are used for the first time as electrode materials for pseudapacitor. The uniqueness of these thin film electrode materials is that they have both excellent conductivity of the conjugated polymer and the rich pore structure of microporous polymers. These characteristics are well displayed on its supercapacitor performance: the specific capacitance value of the pseudacapacitor electrode based on zn-mtcpp is 1 42fg-1, the specific capacitance value of the pseudopotential electrode material based on the poly bthcz is 246fg-1. These values are high in the pure conductive polymer base electrode materials reported in the literature. Thanks to the highly crosslinked network skeleton and rich channels, the ions can be quickly transmitted on the surface of the electrode material, making the two electrode material high current density. Under the high current density of the poly bthcz film electrode at the high current density of 100ag-1, the maximum specific capacitance remains 93%. The experimental results show that the electrochemical polymerization of the new conjugated microporous polymer film provides the supercapacitor except for the traditional conductive polymer, such as polyaniline, polypyrrole and polythiophene. More electrode materials are selected. In view of its structural diversity and design flexibility, more conjugated microporous polymer film electrode materials will be developed to further deepen our understanding of conducting polymers and supercapacitors. In the third chapter, we have designed and prepared two types of D-A configurations with different connection modes. Bipolar doped conductive polymer electrode material, and in-depth study of the structure of its polymerization behavior, doping behavior and the performance of supercapacitor properties of.Pczaqcz and paq3cz two electrode materials made of the prototype supercapacitor devices with the maximum voltage of 2.4V and 2V. wide potential window to bring the large energy density and power density of the device Amplitude enhancement, the maximum energy density of paq3cz device is 19.5whkg-1 (power density 1.2kwkg-1), the maximum power density is 12.2kwkg-1 (energy density 16.4whkg-1), the maximum energy density of pczaqcz device is 29.1whkg-1 (power density 1.3kwkg-1), the maximum power density is 11.8kwkg-1, (the energy density is 23.3whkg-1), far higher than that of the commercial device. The numerical level of the supercapacitor shows the superiority of the bipolar doped material. At the same time, we deeply investigate the charge trap effect on the cycle stability of the III type supercapacitor. The result shows that the serious charge trap effect of the N doped electrode is the main cause of the decay of the electrode material and the device during the cycle charge and discharge experiment. Due to the extended conjugate structure and loose surface structure,.Paq3cz effectively reduces the charge trap effect of N doping and exhibits excellent cyclic stability. In addition, the decline of the N doping activity caused by the charge trap effect is proved to be partially or almost completely restored by the finite number of cyclic voltammetry. To a certain extent, the service life of the device was extended to a certain extent.3. In the fourth chapter, we first explored two redox mediators of organic electrolyte, Fc and 4-oxo TEMPO, which have a very fast reversible redox reaction. On this basis, we have prepared a flexible organic gel electrolyte and all solid state supercapacitor. Benefiting from the wide voltage of the organic gel electrolyte and the extra Faraday capacitance in the oxidation-reduction medium, the working voltage of the supercapacitor as the electrode material is widened to 1.5 V, the maximum ratio of the specific capacitance reaches 363 F g-1, the energy density is 27.4 Wh kg-1., which proves that the addition of redox medium in the electrolyte is simple, universal and high. In addition to the increase of the energy density, these redox mediators also significantly enhance the charging and discharging cycle stability of the supercapacitor by synergistic action with the PEDOT electrode material. In addition, two organogels with oxidizing activity can also be applied to the base. In other electrode materials such as carbon, metal oxide and other conductive polymers, all solid state supercapacitor devices. At the same time, more oxidation-reduction media that can be used in organic electrolytes are still to be explored. Comprehensive organic electrolyte wide window advantages and rich Faraday capacitance advantages of oxidation-reduction medium, super The energy density of the capacitor is expected to be greatly improved and even comparable to that of the battery. In this paper, in this paper, a new type of conductive polymer electrode material is designed and synthesized by introducing a rich pore structure and functional redox groups. Organic gel electrolytes with redox activity. These electrode materials and electrolytes are modified and modified, the specific capacitance of the electrode materials is improved effectively, and the energy density and power density of the devices are enhanced. Furthermore, through the comparison of the structure and properties, we have deeply analyzed the effect of the material structure on its capacitive performance. The energy storage process and mechanism of conductive polymers play a positive role in expanding the applicable material system.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O631;TM53

【相似文獻】

相關期刊論文 前10條

1 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期

2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級電容器研究進展[J];材料導報;2011年15期

3 梓文;;超高能超級電容器[J];兵器材料科學與工程;2013年04期

4 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期

5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期

6 江奇,瞿美臻,張伯蘭,于作龍;電化學超級電容器電極材料的研究進展[J];無機材料學報;2002年04期

7 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期

8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進展[J];礦冶工程;2003年02期

9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強;超級電容器研究及其應用[J];稀有金屬;2003年03期

10 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應用;2005年03期

相關會議論文 前10條

1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年

2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學與物理電源學術年會論文集[C];2009年

3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應用[A];中國化學會第15屆反應性高分子學術討論會論文摘要預印集[C];2010年

4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學學術會議論文集[C];2004年

5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術論壇——2008通信電源學術研討會論文集[C];2008年

6 王燕;吳英鵬;黃毅;馬延風;陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學術論文報告會論文摘要集(上冊)[C];2009年

7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設計、制備及性質(zhì)研究[A];中國化學會第27屆學術年會第10分會場摘要集[C];2010年

8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應的新型超級電容器——多孔碳電極材料的影響[A];中國化學會第27屆學術年會第10分會場摘要集[C];2010年

9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應用學術會議論文集(第7分冊)[C];2010年

10 劉不厭;彭喬;孫s,

本文編號:1899648


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1899648.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶3c440***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com