陜南金屬尾礦庫區(qū)土壤重金屬遷移規(guī)律及其環(huán)境效應(yīng)研究
本文選題:尾礦 + 土壤; 參考:《西安科技大學(xué)》2017年博士論文
【摘要】:金屬尾礦砂中殘留大量重金屬元素,通過地表徑流和滲流、風(fēng)沙揚塵等作用,尾砂中重金屬元素很容易進入尾礦庫周邊的土壤環(huán)境中,從而造成重金屬土壤環(huán)境污染。一方面,土壤重金屬經(jīng)過漫長的積累,通過植被吸收、生物富集、生物放大等作用對生物體造成嚴(yán)重的危害;另一方面,土壤重金屬在復(fù)雜的物理、化學(xué)和生物因素的影響下,其在土壤中的空間分布、存在形態(tài)及危害性質(zhì)也不斷發(fā)生變化。所以,對土壤環(huán)境中重金屬遷移途徑及影響因素進行研究,既有土壤污染治理指導(dǎo)意義,也對礦山土壤污染防治工作具有重要的參考價值。該論文采用實地調(diào)查研究與模擬研究相結(jié)合的方法,分析陜南金屬尾礦區(qū)重金屬在土壤中遷移的規(guī)律及其環(huán)境效應(yīng)。得到以下結(jié)論:(1)土壤重金屬空間分布、富集及分類結(jié)論Cu、Zn、Pb、Cd、Mn、Co是研究區(qū)域內(nèi)具有普遍性污染的元素,Ni、V、Ge、Mo、Ba元素的污染區(qū)域只集中在某一個或幾個尾礦庫周圍的小部分區(qū)域。Cu、Zn、Pb、Cd四種元素在土壤中的富集作用達到顯著污染水平,Ni、Mn、Ba元素富集作用最不明顯,Ge、Mo元素富集具有明顯的區(qū)域差異性。Zn、Pb、Cd、Ni四種元素的可交換態(tài)比例較大,RAC生態(tài)風(fēng)險編碼法等級為中度風(fēng)險等級,其它元素的生態(tài)風(fēng)險為低風(fēng)險或無風(fēng)險等級。對土壤重金屬含量的因子分析與聚類分析結(jié)果基本一致,11種重金屬可分為3類:具有普遍的、共同污染源的Cu-Zn-Pb-Cd-Co-V,有明顯污染源差異的Ge-Ba-Mo,自然污染因素的Mn-Ni。(2)距離對土壤重金屬遷移的影響從Hakanson潛在生態(tài)危害評價結(jié)果確定的重金屬污染安全區(qū)界:距離尾礦庫400-1000m的范圍,重金屬潛在生態(tài)危害為低等級,單元素生態(tài)危害也為低等級,故400m的范圍是潛在生態(tài)風(fēng)險的安全范圍。重金屬元素遷移受到距離的影響顯著:Ba主要遷移范圍0-200m;Ni、Co主要遷移范圍0-400m,Cu、Zn、Pb、Cd、V、Mn主要遷移范圍是0-600m,Ge、Mo主要遷移范圍是0-800m。按照遷移距離大小分析,11種元素的遷移能力排序為 Ge/MoCu/Zn/Cd/V/Pb/MnNi/CoBa。(3)高差對土壤重金屬遷移的影響以尾礦壩面為高差0基準(zhǔn),高差范圍為80-0m的區(qū)域重金屬含量總體低于0-(-80)m的區(qū)域。從Hakanson潛在生態(tài)風(fēng)險評價結(jié)果確定的重金屬污染安全區(qū)界:在高差80-20m的范圍,重金屬潛在生態(tài)風(fēng)險為低等級,Cd單元素生態(tài)危害為中等等級,故在尾礦壩面以上20m范圍,是潛在生態(tài)風(fēng)險安全范圍,但要重點防控Cd元素污染;在尾礦壩面以下0-(-80)m范圍,土壤重金屬潛在危害為中等等級以上,故安全界限尚不能確定。金屬在土壤中的遷移受到高差影響十分顯著:Cu、Cd、Zn、Pb、V主要遷移范圍為0-20m、超過0-(-80)m,Ba元素遷移范圍為0-(-40)m,Mn主要遷移范圍為0-20m和0-(-40)m,Mo遷移范圍為0-20m和0-(-60)m,Ni主要遷移范圍為0-20m和0-(-20)m,Ge主要遷移范圍為0-(-40)m,Co遷移范圍超過0-(-80)m。按照遷移高差范圍分析,11種元素的向上遷移能力:Cu/Zn/Cd/V/Pb/Mn/Ni/CoBa/Ge/Mo,向下遷移能力:Cu/Zn/Cd/Pb/V/CoMoBa/Ge/MnNi。(4)土地利用類型對重金屬的遷移性影響從土壤重金屬元素含量分布分析,Zn、Cd、Ni、Mo、Ba、Cu、Pb、V、Co九種元素在草地土壤中的遷移累積作用比農(nóng)用地、林地、撂荒地土壤明顯。從Hakanson潛在生態(tài)危害指數(shù)RI看,草地土壤的等級為較高等級危害,其它3種土壤為中等,4種利用類型土壤中的Cd的單元素潛在生態(tài)危害等級均為較高等級,說明研究區(qū)域內(nèi)Cd元素應(yīng)是重點防控的污染元素。從金屬元素化學(xué)形態(tài)分析,土地利用類型對11種元素的遷移影響作用差異性較大,如Cu元素遷移性和金屬有效性在農(nóng)用地最大,Zn元素在草地中最大;Pb元素在撂荒地中的遷移能力最強,在草地中的金屬有效性最大;Cd元素在農(nóng)用地、草地中的遷移性及金屬有效性均較大;Ni、Co元素在草地遷移能力最強,金屬有效性在4種土壤中相當(dāng)。草地是多種金屬元素遷移能力或金屬有效性最強的土地利用類型(5)尾砂填埋模擬研究從遷移時間看,Cu、Zn、Pb、Cd發(fā)生明顯遷移的時間分別是12、6、6、3個月,遷移能力順序為CdPb/ZnCu;從遷移距離看,水平方向Cu、Zn、Pb、Cd遷移能力符合Zn/PbCu/Cd,垂直方向遷移能力符合CdZnCuPb;從遷移速率分析,水平和垂直遷移能力均符合CdPbZnCu規(guī)律。從遷移方位分析,受到正南方向的漢江河的影響,SE、S、SW是遷移最為明顯的3個方位;從遷移發(fā)生時間、遷移距離、速率等層面分析的遷移能力排序結(jié)果有較大差異。(6)陜南金屬尾礦區(qū)土壤重金屬遷移數(shù)學(xué)模型模擬實驗的重金屬遷移模型:Cu、Zn、Pb和Cd四種元素遷移量與距離R、深度H和遷移時間T的均達到極顯著負(fù)相關(guān)水平,補充了實地調(diào)研中不能反映的“重金屬遷移的先后順序”和“遷移速率”規(guī)律,該模型反映尾砂重金屬向土壤遷移的初始階段,代表微觀的、較理想化的重金屬遷移預(yù)測模型;實地調(diào)研的重金屬遷移模型:考慮土地利用類型因素的方案B比A方案更能客觀、詳盡的模擬土壤重金屬的遷移趨勢,B方案模型證實了土地利用類型對土壤重金屬的遷移有著重要的影響,同時重金屬含量與距離D、高差H、砂粒S0、粘粒S2也呈現(xiàn)出明顯相關(guān)性,該組模型反映了尾礦庫區(qū)重金屬在土壤中遷移的發(fā)展階段,代表較為宏觀的、客觀實際的重金屬遷移預(yù)測模型。
[Abstract]:Heavy metal elements are retained in the metal tailing sand. Through surface runoff, seepage, sand and dust, heavy metal elements in the tailings can easily enter the soil environment surrounding the tailings reservoir, thus causing heavy metal soil environmental pollution. On the one hand, the heavy metals in the soil accumulate through vegetation, bioaccumulation and biological release through the long accumulation of heavy metals. On the other hand, under the influence of complex physical, chemical and biological factors, the spatial distribution, the existence form and the harmfulness of heavy metals in soil are also constantly changing. Therefore, the study on the migration pathways and influencing factors of heavy metals in the soil environment, not only has soil pollution, but also has soil pollution. The guiding significance of governance also has important reference value for the prevention and control work of mine soil pollution. This paper adopts the method of field investigation and simulation study to analyze the law and environmental effects of heavy metals in the soil of Southern Shaanxi metal tailing area. The following conclusions are obtained: (1) the spatial distribution, enrichment and classification of heavy metals in the soil Conclusions Cu, Zn, Pb, Cd, Mn, Co are the elements of universal pollution in the study area. The contaminated regions of Ni, V, Ge, Mo and Ba are concentrated only in a small portion of the region around a certain or several tailing banks. The enrichment of four elements in the soil is the most obvious pollution level. The four elements of.Zn, Pb, Cd, and Ni have large exchangeable proportions. The RAC ecological risk coding method has a moderate risk grade, and the ecological risk of other elements is low risk or risk free grade. The factor analysis of soil heavy metal content is basically consistent with the results of cluster analysis, and the 11 kinds of heavy metals can be divided into 3 categories. Cu-Zn-Pb-Cd-Co-V with common pollution sources, Ge-Ba-Mo with distinct source of pollution, the Mn-Ni. (2) distance of natural pollution factors affects the heavy metal pollution safety zone determined by the potential ecological hazard assessment results of Hakanson: range from 400-1000m of tailing pond, the potential ecological harm of heavy metals is low The range of 400m is a safe range of potential ecological risk. The migration of heavy metals is significantly affected by distance: the main migration range of Ba, 0-200m, Ni, Co, 0-400M, Cu, Zn, Pb, Cd, V. The main migration range is based on the migration distance. Size analysis, the migration ability of the 11 elements is Ge/MoCu/Zn/Cd/V/Pb/MnNi/CoBa. (3) and the effect of height difference on the migration of heavy metals in the soil is 0 datum of the height difference of the tailings dam surface. The heavy metal content in the area with the range of 80-0m is lower than that of 0- (-80) m. The safety of heavy metals from the results of the potential ecological risk assessment of Hakanson is safe. Zone boundary: in the range of high difference 80-20m, the potential ecological risk of heavy metals is low grade, and the ecological harm of single element of Cd is medium grade. Therefore, the 20m range above the tailings dam surface is the potential ecological risk safety range, but it is important to prevent and control the pollution of Cd elements, and the potential hazards of heavy metals in the 0- (-80) m below the tailings dam surface are above the middle level. Therefore, the migration of metal in the soil is greatly affected by the height difference: Cu, Cd, Zn, Pb, and V migration range is 0-20M, more than 0- (-80) m, Ba element migration range is 0- (-40). The migration range is 0- (-40) m, and the migration range of Co exceeds 0- (-80) M. in accordance with the range of migration height. The upward migration ability of the 11 elements: Cu/Zn/Cd/V/Pb/Mn/Ni/CoBa/Ge/Mo, the downward migration ability: Cu/Zn/Cd/Pb/V/CoMoBa/Ge/MnNi. (4) the influence of the land use type on the heavy metal content distribution from the soil heavy metal element content, Zn, Cd, Ni, The migration accumulation of nine elements, Mo, Ba, Cu, Pb, V, Co in grassland soil is more obvious than that of agricultural land, woodland and abandoned land. From the Hakanson potential ecological hazard index RI, the grade of grassland soil is high grade, the other 3 kinds of soil are medium, and the single element potential ecological hazard grade of Cd in 4 kinds of utilization types is higher. Grade, Cd elements in the study area should be the key pollution control elements. From the analysis of metal elements chemical forms, land use types have great differences in the influence of the migration of the 11 elements, such as Cu element mobility and metal availability in the largest agricultural land, the largest Zn element in the grassland, and the most migratory capacity of Pb elements in abandoned land. Strong metal availability in grassland is the largest, Cd elements have greater mobility and metal availability in agricultural land and grassland; Ni, Co elements have the strongest migration ability in grassland, and the metal availability is equivalent in 4 kinds of soil. The grassland is the simulation study of a variety of metal elements migration ability or the most powerful metal availability type (5) tailings landfill. From the migration time, the time for Cu, Zn, Pb, Cd to migrate is 12,6,6,3 months, and the order of migration ability is CdPb/ZnCu. From the migration distance, the horizontal direction Cu, Zn, Pb, Cd migration ability conforms to Zn/PbCu/Cd, and the vertical migration ability conforms to CdZnCuPb. From the transfer rate analysis, both horizontal and vertical migration ability conform to the regularity. The migration orientation analysis is affected by the Han River in the south direction. SE, S and SW are the 3 most obvious migration directions. The migration ability sorting results from the migration time, the migration distance and the rate are different. (6) the heavy metal migration model in the simulation experiment of the heavy metal transfer model in the southern Shaanxi metal tailings area: Cu, Zn The four elements of Pb and Cd, the migration amount and distance R, the depth H and the migration time T, all reached the extremely significant negative correlation level, which supplemented the law of "the sequence of heavy metal migration" and "migration rate" which could not be reflected in the field investigation. This model reflects the initial stage of the migration of heavy metals to the soil in the tailings, representing the microscopic, more ideal weight. Metal migration prediction model; field investigation of heavy metal migration model: the scheme B considering land use type factors is more objective and more detailed to simulate the migration trend of heavy metals in soil. The B scheme model confirms that the land use type has an important influence on the migration of heavy metals in the soil, while the heavy metal content and distance are D, and the height difference H The grain S0 and the clay S2 also show a significant correlation. This model reflects the development stage of heavy metal migration in the tailings reservoir area and represents a more macroscopic, objective and actual heavy metal migration prediction model.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:X753;X53
【參考文獻】
相關(guān)期刊論文 前10條
1 虞敏達;張慧;何小松;張媛;馬麗娜;檀文炳;高如泰;;典型農(nóng)業(yè)活動區(qū)土壤重金屬污染特征及生態(tài)風(fēng)險評價[J];環(huán)境工程學(xué)報;2016年03期
2 張連科;李海鵬;黃學(xué)敏;李玉梅;焦坤靈;孫鵬;王維大;;包頭某鋁廠周邊土壤重金屬的空間分布及來源解析[J];環(huán)境科學(xué);2016年03期
3 王幼奇;白一茹;王建宇;;基于GIS的銀川市不同功能區(qū)土壤重金屬污染評價及分布特征[J];環(huán)境科學(xué);2016年02期
4 劉碩;吳泉源;曹學(xué)江;王集寧;張龍龍;蔡東全;周歷媛;劉娜;;龍口煤礦區(qū)土壤重金屬污染評價與空間分布特征[J];環(huán)境科學(xué);2016年01期
5 陳明;楊濤;徐慧;蔡忠萍;趙玲;;贛南某鎢礦區(qū)土壤中Cd、Pb的形態(tài)特征及生態(tài)風(fēng)險評價[J];環(huán)境化學(xué);2015年12期
6 陳小敏;朱保虎;楊文;季宏兵;;密云水庫上游金礦區(qū)土壤重金屬空間分布、來源及污染評價[J];環(huán)境化學(xué);2015年12期
7 趙阿娟;李宏光;楊虹琦;段美珍;方明;劉斌;;不同類型及耕種模式土壤重金屬形態(tài)特征分析[J];核農(nóng)學(xué)報;2015年11期
8 宋鳳敏;張興昌;王彥民;李琛;湯波;;漢江上游鐵礦尾礦庫區(qū)土壤重金屬污染分析[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報;2015年09期
9 陳志凡;范禮東;陳云增;邢立騰;楊玉潔;向哲濤;王小莉;;城鄉(xiāng)交錯區(qū)農(nóng)田土壤重金屬總量及形態(tài)空間分布特征與源分析——以河南省某市東郊城鄉(xiāng)交錯區(qū)為例[J];環(huán)境科學(xué)學(xué)報;2016年04期
10 上官宇先;秦曉鵬;趙冬安;趙龍;王林權(quán);侯紅;李發(fā)生;;利用大型土柱自然淋溶條件下研究土壤重金屬的遷移及形態(tài)轉(zhuǎn)化[J];環(huán)境科學(xué)研究;2015年07期
相關(guān)博士學(xué)位論文 前10條
1 宋鳳敏;陜西典型鐵尾礦庫區(qū)土壤重金屬遷移及其修復(fù)研究[D];西北農(nóng)林科技大學(xué);2016年
2 房增強;鉛鋅礦區(qū)土壤重金屬污染特征及穩(wěn)定化研究[D];中國礦業(yè)大學(xué)(北京);2016年
3 董紅梅;陜西白水蘋果園土壤元素分布與環(huán)境研究[D];陜西師范大學(xué);2014年
4 谷金鋒;大興安嶺典型采礦跡地土壤重金屬污染分析與生態(tài)恢復(fù)研究[D];東北林業(yè)大學(xué);2014年
5 陳秀端;西安市表層土壤重金屬污染的環(huán)境地球化學(xué)研究[D];陜西師范大學(xué);2013年
6 楊金香;木本植物修復(fù)煤礦復(fù)墾區(qū)重金屬遷移規(guī)律研究[D];安徽理工大學(xué);2012年
7 朱佳文;湘西花垣鉛鋅礦區(qū)重金屬污染土壤生態(tài)修復(fù)研究[D];湖南農(nóng)業(yè)大學(xué);2012年
8 溫小軍;贛南稀土礦區(qū)土壤環(huán)境特征及稀土金屬地球化學(xué)行為研究[D];云南大學(xué);2012年
9 鄭順安;我國典型農(nóng)田土壤中重金屬的轉(zhuǎn)化與遷移特征研究[D];浙江大學(xué);2010年
10 于常武;堿性鉬尾礦及其影響水體中重金屬遷移轉(zhuǎn)化規(guī)律研究[D];大連理工大學(xué);2010年
,本文編號:1817596
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1817596.html