天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

深部巷道圍巖變形破壞機(jī)理與穩(wěn)定性控制原理研究

發(fā)布時(shí)間:2018-04-16 20:07

  本文選題:高應(yīng)力 + 塑性區(qū); 參考:《湖南科技大學(xué)》2017年博士論文


【摘要】:隨著淺部煤炭資源的枯竭,資源開(kāi)采不斷向地球深部延伸,千米級(jí)深部礦井資源開(kāi)采越來(lái)越多。由于深部礦井圍巖典型的“三高”賦存環(huán)境與資源開(kāi)采過(guò)程中的采動(dòng)等因素的影響,導(dǎo)致巷道冒頂事故頻發(fā)、幫部擠出量大、底鼓問(wèn)題嚴(yán)重、支護(hù)失效較為普遍,巷道圍巖變形難以得到有效控制,直接制約了深部煤炭資源的安全高效開(kāi)采。因此,對(duì)深部高應(yīng)力巷道圍巖的控制方法和支護(hù)技術(shù)研究具有重要的理論工程意義。本研究依托國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(51434006)和國(guó)家自然科學(xué)基金面上項(xiàng)目(51374105),采用理論分析、數(shù)值模擬、巖體力學(xué)試驗(yàn)和現(xiàn)場(chǎng)工程試驗(yàn)等相結(jié)合的綜合研究方法,系統(tǒng)研究了深部巷道圍巖變形破壞力學(xué)機(jī)理,分析了塑性區(qū)時(shí)空演化規(guī)律與幾何分布形態(tài)對(duì)巷道圍巖穩(wěn)定性的影響,揭示了深部高應(yīng)力巷道圍巖變形破壞難以控制的力學(xué)本質(zhì),探討了錨桿(錨索)錨固機(jī)理,提出了深部高應(yīng)力巷道圍巖穩(wěn)定性控制支護(hù)原理與方法,取得了如下研究成果:根據(jù)深部巷道圍巖體峰值強(qiáng)度前后應(yīng)變硬化與應(yīng)變軟化特性,從能夠表征巖體強(qiáng)度特征參數(shù)的內(nèi)摩擦角和內(nèi)聚力角度出發(fā),引入硬化系數(shù)和軟化系數(shù)概念,采用巖石應(yīng)力、應(yīng)變的彈性-塑性硬化-塑性軟化-塑性流動(dòng)四線模型,并基于莫爾-庫(kù)侖屈服準(zhǔn)則與非關(guān)聯(lián)流動(dòng)法則,建立了深部巷道圍巖力學(xué)模型,獲得了圓形巷道圍巖彈性區(qū)、塑性硬化區(qū)、塑性軟化區(qū)、塑性流動(dòng)區(qū)應(yīng)力、位移以及半徑的解析表達(dá)式。對(duì)于巷道圍巖塑性硬化區(qū),其徑向與切向應(yīng)力隨內(nèi)摩擦角、內(nèi)聚力硬化系數(shù)的增大而增大,徑向與切向應(yīng)變也隨內(nèi)摩擦角硬化系數(shù)的增大而增大;而對(duì)于塑性軟化區(qū),其徑向與切向應(yīng)力隨內(nèi)摩擦角、內(nèi)聚力軟化系數(shù)的增大而減小,徑向與切向應(yīng)變也隨內(nèi)摩擦角軟化系數(shù)的增大而減小。提高巷道圍巖塑性硬化區(qū)的內(nèi)摩擦角、內(nèi)聚力硬化系數(shù)與降低塑性軟化區(qū)的內(nèi)摩擦角、內(nèi)聚力軟化系數(shù)可提高圍巖承載能力。深部巷道的開(kāi)挖過(guò)程就是圍巖的卸荷過(guò)程,對(duì)煤礦開(kāi)采中常見(jiàn)的白砂巖進(jìn)行了巖體力學(xué)試驗(yàn)。單軸壓縮作用下的巖體破壞形態(tài)呈現(xiàn)“X”型,三軸壓縮和恒軸卸圍壓作用下的巖體破裂形態(tài)呈現(xiàn)沿單斜面剪切破壞;當(dāng)圍壓卸荷速率相同時(shí),初始圍壓越大,巖體變形破壞所需要的時(shí)間越長(zhǎng),較高的原巖應(yīng)力是導(dǎo)致巷道圍巖長(zhǎng)時(shí)間變形而不能收斂的主要原因。巖體的峰值強(qiáng)度與殘余強(qiáng)度以及達(dá)到峰值強(qiáng)度時(shí)的軸向應(yīng)變、環(huán)向應(yīng)變均隨圍壓的增高而增大,若將支護(hù)阻力看作圍壓,如果能夠提供與圍巖強(qiáng)度處于同一數(shù)量級(jí)的支護(hù)阻力,增大支護(hù)阻力有助于提高巷道圍巖的峰值強(qiáng)度、殘余強(qiáng)度以及允許變形能力,增強(qiáng)巷道圍巖抵抗破壞的能力。深部巷道圍巖所處的地質(zhì)環(huán)境非常復(fù)雜,其應(yīng)力狀態(tài)也是不斷變化的,經(jīng)歷了復(fù)雜的加卸荷應(yīng)力路徑演化過(guò)程。三軸加載-卸圍壓-單軸壓縮與三軸加載-卸軸壓-單軸壓縮作用下的巖體沿試件軸向出現(xiàn)多個(gè)破裂面和相當(dāng)數(shù)量的裂紋,宏觀與微觀裂紋數(shù)量隨初始軸壓的增大而逐漸增多,單軸抗壓強(qiáng)度隨初始軸壓的增大而逐漸減小。巖體加載歷史會(huì)對(duì)其本身產(chǎn)生一定程度的損傷和一定量的塑性變形,其損傷程度、塑性變形受制于加卸載方式和應(yīng)力水平的大小。采動(dòng)對(duì)巷道圍巖的影響程度是以原巖應(yīng)力為基礎(chǔ),原巖應(yīng)力是巷道圍巖產(chǎn)生損傷的本真屬性,采動(dòng)是引起圍巖損傷的附加屬性,原巖應(yīng)力越大,采動(dòng)越強(qiáng)烈,圍巖內(nèi)部損傷程度越嚴(yán)重,圍巖塑性區(qū)范圍越大。深部高應(yīng)力巷道圍巖的變形破壞過(guò)程實(shí)質(zhì)上是由圍巖塑性區(qū)的形成與擴(kuò)展引起的,塑性區(qū)的幾何分布形態(tài)和范圍決定了圍巖的破壞模式和程度。非等壓條件下的深部高應(yīng)力巷道圍巖塑性區(qū)時(shí)空演化過(guò)程相繼經(jīng)歷V個(gè)階段:I塑性點(diǎn)階段、II塑性環(huán)階段、III塑性區(qū)均勻擴(kuò)展階段、IV塑性區(qū)惡性擴(kuò)展階段、V塑性區(qū)不均勻擴(kuò)展階段。采動(dòng)在原巖應(yīng)力的基礎(chǔ)上,一方面改變巷道圍巖主應(yīng)力的大小,使工作面前方回采巷道圍巖垂直方向應(yīng)力升高,水平方向應(yīng)力減少,該種情況下的圍巖更容易產(chǎn)生蝶形塑性區(qū),且蝶葉發(fā)育尺寸和塑性破壞范圍很大;另一方面使巷道圍巖主應(yīng)力方向發(fā)生改變,蝶形塑性區(qū)幾何分布形態(tài)隨之發(fā)生旋轉(zhuǎn),當(dāng)?shù)~位于巷道頂板正上方時(shí),頂板穩(wěn)定性最差,變形量最大,此時(shí)的頂板存在冒落風(fēng)險(xiǎn)。預(yù)應(yīng)力錨桿對(duì)圍巖應(yīng)力場(chǎng)、塑性區(qū)影響不明顯,對(duì)巷道較深部圍巖的變形控制作用有限,但對(duì)抑制錨固區(qū)破裂圍巖體之間的離層和滑動(dòng),減少?gòu)堥_(kāi)滑移等非連續(xù)性變形作用非常明顯。以目前的支護(hù)強(qiáng)度對(duì)控制巷道圍巖變形作用有限,總是存在一定的圍巖變形依靠現(xiàn)有支護(hù)水平無(wú)法控制,將此部分無(wú)法控制的圍巖變形稱(chēng)之為“給定變形”。深部巷道圍巖的這種“給定變形”是由高地應(yīng)力造成的,“給定變形”量隨原巖應(yīng)力的增加而增大。基于現(xiàn)有支護(hù)水平無(wú)法實(shí)現(xiàn)巷道圍巖大變形控制的事實(shí),提出了巷道圍巖穩(wěn)定性控制原理與方法,在為巷道預(yù)留適當(dāng)變形空間的條件下,允許圍巖有較大的變形,并采取合理的支護(hù)方法降低圍巖的非連續(xù)性變形,增強(qiáng)巷道圍巖的整體性與穩(wěn)定性,減少巷道維修量,降低支護(hù)成本;谏畈扛邞(yīng)力巷道圍巖穩(wěn)定性控制原理與關(guān)鍵支護(hù)技術(shù),并結(jié)合現(xiàn)場(chǎng)工程地質(zhì)圍巖條件,以趙固二礦I盤(pán)區(qū)膠帶運(yùn)輸大巷支護(hù)為工程實(shí)例,在巷道掘進(jìn)時(shí)預(yù)留一定的變形空間以容納圍巖部分“給定變形”,并有針對(duì)性的提出以“可接長(zhǎng)錨桿+剛性長(zhǎng)螺紋鋼錨桿+錨網(wǎng)+W鋼帶+噴射混凝土”為主體,并輔以可接長(zhǎng)錨桿強(qiáng)化頂板的綜合控制技術(shù)支護(hù)方案。服務(wù)期間的巷道圍巖變形滿足礦井安全生產(chǎn)需求,未曾翻修,也未發(fā)現(xiàn)錨桿桿體破斷、錨固失效與圍巖冒頂、片幫等情況,降低了巷道維護(hù)費(fèi)用,保障了巷道服務(wù)期間的安全使用。
[Abstract]:With the depletion of shallow coal resources, mining resources continue to extend to the deep earth, 1000m deep mine resource exploitation more and more. Because of the influence of deep mine rock typical of the "three high" environment and resources in the process of mining mining and other factors, resulting in frequent tunnel collapse accident, part of large amount of extrusion, the floor heave problem, supporting failure is more common, it is difficult to effectively control the deformation of surrounding rock, directly restricts the deep coal resources safety and high efficiency mining. Therefore, the deep high stress has important significance to control the engineering theory and research method of surrounding rock stress roadway supporting technology. This study is based on the National Natural Science Foundation of China the project (51434006) and the National Natural Science Foundation of China (51374105), by means of theoretical analysis, numerical simulation, rock mechanics test and field engineering test etc. the combination of integrated research methods, system Research on the system of the deep roadway surrounding rock deformation and failure mechanism, analysis of the plastic zone evolution patterns and geometric distribution influence on the stability of surrounding rock, reveals the nature of damage mechanics is difficult to control the deformation of surrounding rock of deep roadways in high stress area, discusses the bolt (cable) anchoring mechanism, put forward the deep and high stability rock roadway control principle and method, has achieved the following results: according to before and after the peak strength of deep roadway surrounding rock body strain hardening and strain softening characteristics, starting from the perspective of cohesion to characterize the strength of rock mass parameters and the angle of internal friction, is introduced into the hardening coefficient and softening coefficient, the rock stress, strain the elastic - plastic hardening plastic softening and plastic flow of four line model, and based on the Mohr Coulomb yield criterion and non associated flow rule, established a mechanical model for deep roadway, The circular tunnel in elastic zone, plastic zone, plastic softening zone, the stress displacement and plastic flow area, the radius of the analytical expressions for the plastic hardening zone of roadway surrounding rock, the radial and tangential stress increases with the increase of internal friction angle, cohesion hardening coefficient increases with increasing diameter, to the tangential strain with the internal friction angle of the hardening coefficient increases; and the plastic softening zone, the radial and tangential stress increases with the increase of internal friction angle, cohesion softening coefficient decreases with increase of radial and tangential strain with internal friction angle decreases. The softening coefficient of high plastic tunnel the hardening zone of surrounding rock of the internal friction angle, cohesion hardening coefficient and reduce the plastic softening zone of the internal friction angle, cohesion softening coefficient can improve the bearing capacity of surrounding rock of deep roadway. The excavation is the surrounding rock unloading process of common coal mining in the white sandstone of rock strength Experimental study on uniaxial compression of rock. The failure pattern of the present "X" type, three axial compression and constant axial unloading confining pressure rock rupture form shear failure along single inclined plane; when the unloading confining pressure at the same rate, the initial increase of confining pressure, the deformation and failure of rock mass need more time the higher, the original rock stress is the result of long time and deformation of the surrounding rock convergence cannot be the main reason. The peak strength and residual strength of the rock mass and peak strength when the axial strain increases, ring strain increases with the increase of confining pressure, the support resistance as the confining pressure, if we can provide with the strength of surrounding rock at the same level of support resistance, increasing support resistance is helpful to improve the peak strength of surrounding rock, residual strength and allowable deformation ability, enhance the ability to resist destruction of surrounding rock of deep roadway. The geological environment is very The complex stress state is also changing, has undergone a complex loading and unloading stress path. The evolution process of three axis loading and unloading confining pressure - uniaxial compression and three axial loading and axial unloading and uniaxial compression of rock specimens along the axial multiple fracture surface and a considerable number of crack, increase in the number of macro and micro crack with the initial axial pressure and increase gradually increased, the uniaxial compressive strength with the initial axial pressure decreases gradually. The rock loading history of plastic deformation will produce a certain degree of injury and a certain amount of itself, and the degree of injury, the plastic deformation subjected to loading and unloading method and the stress level of the size of the mining influence degree of the surrounding rock is based on the original rock stress as the foundation, the original rock stress of roadway surrounding rock is produced essential attribute of mining damage, is caused by additional properties of rock damage, the original rock stress, surrounding rock mining more intense, internal The more serious the damage, the plastic zone of the surrounding rock. The deep soft rock under high stress deformation and failure process is essentially formed by the plastic zone of the surrounding rock and the expansion caused by the plastic zone distribution and geometric range determines the extent and pattern of failure of the surrounding rock. The plastic zone of surrounding rock of roadway space force have experience of V evolution stages of deep non isobaric conditions should be high: I plastic stage, II plastic ring, III plastic zone uniform expansion stage, IV plastic zone malignant expansion phase, V plastic zone uneven expansion stage. Based on the mining of rock stress. On the one hand, the change of surrounding rock stress, the vertical direction of working face surrounding rock roadway side stress increased, horizontal stress is reduced, the surrounding rock conditions are more prone to butterfly plastic zone, and the butterfly leaf size and plastic damage range is large; on the other hand the lane The surrounding rocks along the direction of the principal stress change, butterfly plastic zone geometry distribution occurs when rotating, butterfly leaves located just above the roof, the roof stability is the worst, the maximum deformation, the roof caving risk. Existing prestressed bolt on the surrounding rock stress field, effects of plastic deformation zone is not obvious. The control effect on roadway deep surrounding rock is limited, but the inhibition between the anchorage zone of the surrounding rock rupture separation and sliding, reduce open slip discontinuous deformation effect is very obvious. The supporting strength to control the deformation of surrounding rock deformation effect, there are always rely on the existing support level to control the surrounding rock this part, will be unable to control the surrounding rock deformation is called "given deformation of deep tunnel". This "given deformation is caused by high stress," given deformation "with Yuan Yan stress. With the increasing support level can not be achieved. The large deformation of surrounding rock control based on the facts, put forward the principle and method of surrounding rock stability control in roadway reserved deformation space under the condition of large deformation of surrounding rock is allowed, and adopt reasonable support method to reduce non continuous deformation of surrounding rock, enhance the integrity and stability of surrounding rock roadway, reducing the amount of maintenance, reduce the cost of support. The surrounding rock stress roadway stability control principle and key supporting technique of deep high stress based on the engineering geological conditions of surrounding rock and the field, to Zhao Gu two mine I mining area belt transport roadway as an example, the deformation space the reserved in the tunnel to accommodate the surrounding part of "given deformation", and put forward a long rigid long thread steel bolt + anchor + +W steel shotcrete "main body" acceptability, and auxiliary The lengthened bolt reinforcement of roof control technology supporting scheme. The deformation to meet the mine safety requirements, no revision of roadway surrounding rock during the service, also found no anchor rod breaking, anchorage failure and rock roof spalling, etc., to reduce the cost of roadway maintenance, guarantee the safe use of roadway service period.

【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD322;TD353

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 謝和平;;“深部巖體力學(xué)與開(kāi)采理論”研究構(gòu)想與預(yù)期成果展望[J];工程科學(xué)與技術(shù);2017年02期

2 趙志強(qiáng);馬念杰;郭曉菲;趙希棟;樊龍;;大變形回采巷道蝶葉型冒頂機(jī)理與控制[J];煤炭學(xué)報(bào);2016年12期

3 袁越;王衛(wèi)軍;袁超;余偉健;吳海;彭文慶;;深部礦井動(dòng)壓回采巷道圍巖大變形破壞機(jī)理[J];煤炭學(xué)報(bào);2016年12期

4 趙延林;馬文豪;唐勁舟;袁超;李樹(shù)清;萬(wàn)文;;基于塑性擴(kuò)張的巖石變參數(shù)蠕變損傷模型與工程應(yīng)用[J];煤炭學(xué)報(bào);2016年12期

5 王衛(wèi)軍;袁超;余偉健;吳海;彭文慶;彭剛;柳小勝;董恩遠(yuǎn);;深部大變形巷道圍巖穩(wěn)定性控制方法研究[J];煤炭學(xué)報(bào);2016年12期

6 康紅普;;我國(guó)煤礦巷道錨桿支護(hù)技術(shù)發(fā)展60年及展望[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2016年06期

7 王衛(wèi)軍;袁超;郭罡業(yè);余偉健;;強(qiáng)烈采動(dòng)作用下巖巷圍巖塑性區(qū)惡性擴(kuò)展的控制研究[J];采礦與安全工程學(xué)報(bào);2016年06期

8 馬念杰;郭曉菲;趙志強(qiáng);趙希棟;劉洪濤;;均質(zhì)圓形巷道蝶型沖擊地壓發(fā)生機(jī)理及其判定準(zhǔn)則[J];煤炭學(xué)報(bào);2016年11期

9 趙志強(qiáng);馬念杰;郭曉菲;趙希棟;夏永學(xué);馬振凱;;煤層巷道蝶型沖擊地壓發(fā)生機(jī)理猜想[J];煤炭學(xué)報(bào);2016年11期

10 李地元;孫志;李夕兵;謝濤;;不同應(yīng)力路徑下花崗巖三軸加卸載力學(xué)響應(yīng)及其破壞特征[J];巖石力學(xué)與工程學(xué)報(bào);2016年S2期

相關(guān)博士學(xué)位論文 前3條

1 張緒言;大采高回采巷道圍巖控制技術(shù)研究[D];太原理工大學(xué);2010年

2 李樹(shù)清;深部煤巷圍巖控制內(nèi)、外承載結(jié)構(gòu)耦合穩(wěn)定原理的研究[D];中南大學(xué);2008年

3 白冰;CO_2煤層封存流動(dòng)—力學(xué)理論及場(chǎng)地力學(xué)穩(wěn)定性數(shù)值模擬方法[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2008年

相關(guān)碩士學(xué)位論文 前1條

1 崔洪章;深部巷道圍巖變形破壞特征模擬研究及控制技術(shù)[D];太原理工大學(xué);2013年



本文編號(hào):1760395

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1760395.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b1ff9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com