碳納米管及其限域體系的高壓結(jié)構(gòu)相變和超硬相研究
本文選題:金剛石對(duì)頂砧 切入點(diǎn):高壓 出處:《吉林大學(xué)》2017年博士論文
【摘要】:碳納米管作為一維納米材料的典型代表,其中空的一維納米孔道為研究納米限域體系提供了理想的模板。限域環(huán)境下碳納米管內(nèi)部的分子會(huì)展示出不同于體材料的新結(jié)構(gòu)和新性質(zhì)。高壓可以有效的調(diào)控原子間距離,從而影響其相互作用及成鍵形式,進(jìn)而導(dǎo)致物質(zhì)結(jié)構(gòu)、性質(zhì)的變化,是合成新材料、發(fā)現(xiàn)新現(xiàn)象的重要手段。將碳納米管及其限域體系與高壓手段相結(jié)合開(kāi)展實(shí)驗(yàn)研究,不僅有助于豐富和深化我們對(duì)碳材料新特性及其主客體之間相互作用的認(rèn)識(shí),揭示它們高壓相變的物理機(jī)制,而且為我們構(gòu)筑具有新型結(jié)構(gòu)和性質(zhì)的碳材料提供了新的思路和途徑。目前關(guān)于碳納米管及其限域富勒烯和納米帶體系在高壓下的結(jié)構(gòu)轉(zhuǎn)變機(jī)制和性質(zhì)變化還不清楚,以碳納米管作為初始碳源去構(gòu)筑新碳結(jié)構(gòu)的研究還很少。針對(duì)這一問(wèn)題,本文對(duì)多壁碳納米管陣列(MWNTAs)、C70 peapod(C70@SWCNTs)、石墨烯納米帶摻雜的單壁碳納米管(GNRs@SWCNTs)和碳納米管纖維這幾種材料開(kāi)展高壓研究,得到如下結(jié)果:1.利用高壓偏振拉曼光譜對(duì)多壁碳納米管陣列(MWNTAs)進(jìn)行了研究,針對(duì)高壓下MWNTs陣列中的壓制管間相互作用變化、結(jié)構(gòu)相變及鍵連行為等問(wèn)題進(jìn)行了分析。發(fā)現(xiàn)多壁碳納米管陣列在常壓條件下D峰和G峰的強(qiáng)度隨偏振角度的改變呈現(xiàn)規(guī)律性的變化,表現(xiàn)出明顯的偏振依賴性:在VV情況下,G峰的拉曼峰強(qiáng)度在0o達(dá)到最強(qiáng),90o達(dá)到最小;VH時(shí),45o達(dá)到最強(qiáng),0o/90o達(dá)到最小。高壓下,G峰的強(qiáng)度隨著壓力的增加偏振依賴性逐漸減弱,當(dāng)壓力高于20GPa后,偏振依賴性消失。對(duì)22GPa卸壓后的樣品進(jìn)行表征發(fā)現(xiàn)壓力處理后,陣列中碳納米管的排布更為緊湊,但多壁碳納米管的結(jié)構(gòu)并沒(méi)有被破壞。這種偏振性的減弱是由于壓力下增強(qiáng)的管間相互作用導(dǎo)致電子態(tài)離域,降低了材料的偏振依賴性,使其行為趨向體材料所引起的。另一方面,隨著壓力進(jìn)一步增加,MWNTAs出現(xiàn)的偏振依賴性消失可以歸因于壓力誘導(dǎo)管間相互作用增強(qiáng)導(dǎo)致碳管發(fā)生結(jié)構(gòu)相變,管間或?qū)娱g形成共價(jià)鍵。我們的結(jié)果說(shuō)明偏振拉曼技術(shù)能夠在高壓下用于判斷MWNTs陣列中壓力誘導(dǎo)的管間相互作用變化和結(jié)構(gòu)相變的行為。這也解決了長(zhǎng)期以來(lái)在高壓下研究碳管管間聚合課題上存在的爭(zhēng)議,為碳納米管的壓致轉(zhuǎn)變研究提供了重要的思路。2.對(duì)C70@SWNTs材料開(kāi)展了原位超高壓研究,獲得了可常壓截獲的新型超硬碳結(jié)構(gòu)。利用透射電鏡、Raman光譜及X射線衍射(XRD)等實(shí)驗(yàn)手段對(duì)幾個(gè)不同壓力卸壓的C70 peapod樣品分別進(jìn)行了表征。發(fā)現(xiàn)從最高壓力卸壓后的C70 peapod樣品的XRD具有很多清晰可辨的衍射峰,這些衍射峰不屬于以往報(bào)道的任何碳結(jié)構(gòu)。理論模擬進(jìn)一步預(yù)測(cè)了一個(gè)新的全sp3碳的、具有C2/m對(duì)稱性的V carbon結(jié)構(gòu)。所有的碳原子完全以化方式成鍵。計(jì)算表明V carbon在0-100GPa的壓力范圍是穩(wěn)定的,它的能量?jī)H略高于金剛石,而低于以往報(bào)道的其他碳結(jié)構(gòu)。此外,V carbon具有與金剛石相媲美的的硬度和體彈模量,這很好的解釋了實(shí)驗(yàn)中金剛石砧面上留下的環(huán)形壓痕。V carbon模擬的XRD譜與實(shí)驗(yàn)數(shù)據(jù)吻合的很好,說(shuō)明我們實(shí)驗(yàn)產(chǎn)生的新碳結(jié)構(gòu)指認(rèn)為V carbon是合理的。同樣重要的是,我們給出了從初始C70 peapod材料向V carbon轉(zhuǎn)變的物理圖像。該轉(zhuǎn)變過(guò)程中,含奇數(shù)碳環(huán)的C70 peapod作為基本構(gòu)筑單元起到了重要作用,這為設(shè)計(jì)合成新碳結(jié)構(gòu)提供了一種新的策略,強(qiáng)調(diào)了初始碳源的重要性。該結(jié)果對(duì)人們構(gòu)筑碳結(jié)構(gòu)提供了新的思路,將啟發(fā)人們利用、設(shè)計(jì)含有奇數(shù)碳環(huán)的peapod前驅(qū)物作為基本單元去構(gòu)筑新碳結(jié)構(gòu)。3.對(duì)限域于碳納米管內(nèi)的石墨烯納米帶(GNRs@SWNTs)開(kāi)展了常壓和高壓結(jié)構(gòu)研究,揭示了溫度對(duì)限域納米帶生長(zhǎng)的影響及高壓下結(jié)構(gòu)相變行為。研究發(fā)現(xiàn)限域于碳納米管內(nèi)部的二萘嵌苯分子在高溫退火后能形成限域的納米帶,且納米帶的長(zhǎng)度受退火溫度影響。高壓進(jìn)一步調(diào)控主客體之間的相互作用,發(fā)現(xiàn)碳納米管在7GPa左右開(kāi)始發(fā)生坍塌,內(nèi)部的納米帶受到破壞,限域的石墨烯納米帶作為“探針”反映碳納米管在高壓下的結(jié)構(gòu)相變。對(duì)比研究了高壓下空的和填充的碳納米管的結(jié)構(gòu)塌縮壓力,發(fā)現(xiàn)填充納米帶后的碳納米管塌縮壓力明顯降低,這種現(xiàn)象是由于納米帶分子的非均勻填充碳納米管,帶來(lái)了應(yīng)力分布不均勻所致。理論計(jì)算進(jìn)一步支持我們的實(shí)驗(yàn)結(jié)果。該結(jié)果有助于我們更深入理解限域空間納米帶的高壓變化行為以及納米帶與碳納米管之間相互作用。4.利用激光加熱在金剛石對(duì)頂砧內(nèi)對(duì)碳納米管纖維進(jìn)行了高溫高壓研究研究。發(fā)現(xiàn)15GPa,2000K條件下,碳納米管纖維轉(zhuǎn)變形成納米金剛石結(jié)構(gòu),同時(shí)產(chǎn)物中可能還含有少量的“n-diamond”結(jié)構(gòu)。
[Abstract]:Carbon nanotubes as a typical one-dimensional nano materials, including one-dimensional nano pore space of nano confinement system provides an ideal template. The molecular carbon nanotubes within the domain environment will show new structures and new properties different from bulk materials. High pressure can effectively control the distance between atoms, thus affecting their mutual the role and bonding form, resulting in material structure, the nature of the change is the synthesis of new materials, an important means to discover new phenomena. The carbon nanotube and its confinement system and high pressure by means of combining experiments, not only helps to enrich and deepen our understanding of the interaction between the new characteristics of carbon material and its main object they reveal the physical mechanism, high pressure phase transition, and the formation of the carbon materials with novel structure and properties and provides a new way for us. At present on carbon nanotubes and its limit The domain of fullerenes and nanoribbons structure transition mechanism and properties under high pressure change is not clear, using carbon nanotubes as the initial carbon source to build on new carbon structure are rare. In order to solve this problem, the array of multi walled carbon nanotubes (MWNTAs), C70 Peapod (C70@ SWCNTs), graphene nanoribbons doped single-walled carbon nanotubes (GNRs@SWCNTs) and carbon nanotube fibers of high pressure to carry out this research of several materials, the results are as follows: 1. using high polarization Raman spectra of multi walled carbon nanotubes array (MWNTAs) was studied, the interaction between the change in the tube pressing under high pressure in MWNTs array, phase transformation and bonding behavior of structure the problem is analyzed. That change strength of multiwalled carbon nanotube array under atmospheric conditions D and G peaks with the polarization angle of the obvious polarization dependent: in the case of VV, G peak The intensity of Raman peak reached its maximum at 0o, 90o VH, 45o reached the minimum; the strongest, 0o/90o minimum. Under high pressure, the intensity of G peak with the increase of pressure polarization dependence gradually weakened, when the pressure is higher than 20GPa, the polarization dependence of the samples disappeared. After unloading for 22GPa. The results showed that the pressure after treatment, the carbon nanotube array arrangement is more compact, but the structure of multi walled carbon nanotubes and has not been destroyed. This is due to the reduced polarization pressure enhanced tube interaction leads to electronic delocalization, reduces material polarization dependent, the behavior body caused by the materials. On the other hand, with the further increase of pressure, the polarization dependence of MWNTAs disappeared can be attributed to the pressure induced by the interaction between tubes led to the increase of carbon nanotube structure transformation, the formation of a covalent bond between layers of Guan Jianhuo. Our results show that polarization pull Manchester technology under high pressure is used to determine the phase transition pressure induced tube interaction and structural changes in the MWNTs array. This behavior has been solved under high pressure of carbon tubes are polymerization on the subject of controversy,.2. provides a way for C70@SWNTs material to carry out in situ high pressure on carbon nanotubes the pressure induced change research, the new super hard carbon structure can be obtained. The atmospheric interception by transmission electron microscopy, Raman spectroscopy and X ray diffraction (XRD) C70 Peapod sample experiments on several different pressure were characterized. C70 Peapod samples from the highest pressure after the XRD has many the clarity of the diffraction peaks, the diffraction peak of carbon structure does not belong to any previously reported. Further predicted a new SP3 carbon simulation theory, V carbon structure with C2/m symmetry of all. Carbon atoms entirely in way of bonding. The calculation shows that V carbon is stable in the pressure range of 0-100GPa, its energy is only slightly higher than the diamond, but lower than the other carbon structure reported previously. In addition, V carbon has comparable with diamond hardness and bulk modulus, which is a good explanation of the annular indentation.V carbon left on the surface of the diamond anvil experiment simulation of XRD spectra agree well with the experimental data well, indicating that the new structure of our carbon produced by the experiments that think V carbon is reasonable. It is also important that we give the physical image is transformed from the initial C70 to V carbon Peapod materials. The process of change with odd carbon ring C70 Peapod as the basic building unit has played an important role, which provides a new strategy for the design and synthesis of new carbon structure, stressed the importance of the initial carbon source. The result of the formation of the carbon structure for people New ideas will inspire people to use and design of Peapod precursors containing odd carbon ring as the basic unit to build a new structure of graphene nano carbon.3. confined inside carbon nanotubes (GNRs@SWNTs) were studied with normal pressure and high pressure structure, reveals the influence of temperature on the structure phase transition behavior of nano confinement with growth and under high pressure. The study found that confined in carbon nanotubes within two rylene molecules can form nano confinement zone after annealing at high temperature and nano belt length affected by the annealing temperature. The interaction between the main object of high pressure further regulation, the discovery of carbon nanotubes to collapse around 7GPa, internal nano with the destruction of the graphene nano domain as "structural transformation" probe reflects the carbon nanotubes under high pressure. A comparative study of the structure collapse under high pressure and air filled carbon nanotubes reduced pressure, hair Is filled with carbon nanotubes nanoribbons after collapse shrinkage pressure decreased obviously, this phenomenon is due to the non uniformly filled carbon nanotubes with molecular, brings stress distribution is not uniform. The theoretical calculation further supports our experimental results. The results will help us to further understand the pressure change behavior between the nano domain space with the nanoribbons and carbon nanotubes and the interaction of.4. with laser heating in the diamond anvil cell of carbon nanotube fibers was studied under high temperature and high pressure. The discovery of 15GPa, 2000K, carbon nanotube fibers transformed into nano diamond structure, while the product may also contain a small amount of "n-Diamond" structure.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O613.71;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾令祉,,蔣毅堅(jiān),王榮平;鈦酸鋇有序──無(wú)序型結(jié)構(gòu)相變機(jī)制的新證據(jù)[J];光散射學(xué)報(bào);1995年Z1期
2 王瑋,李來(lái)明,席時(shí)權(quán);月桂胺鹽酸鹽結(jié)構(gòu)相變機(jī)理的紅外光譜研究[J];應(yīng)用化學(xué);1992年05期
3 李全;馬琰銘;;高壓下輕元素單質(zhì)的結(jié)構(gòu)相變[J];化學(xué)進(jìn)展;2011年05期
4 崔愛(ài)莉;佐藤治;寇會(huì)忠;;鹵離子橋聯(lián)銅(Ⅱ)配合物的結(jié)構(gòu)相變與熱致磁性變化[J];高等學(xué);瘜W(xué)學(xué)報(bào);2009年09期
5 馬琰銘,馬紅安,潘躍武,崔啟良,劉冰冰,崔田,鄒廣田,劉景,王立軍;Y_2O_3壓致結(jié)構(gòu)相變的研究[J];核技術(shù);2002年10期
6 葉錫生,沙健,焦正寬,彭子飛,張立德;納米 TiO_2 的結(jié)構(gòu)相變[J];浙江大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年01期
7 F.W.Voss;魏愚;;CsNaLnCl_6中的結(jié)構(gòu)相變[J];稀土;1982年01期
8 張秀貞,孫占青;LiTaO_3晶體結(jié)構(gòu)相變的等頻喇曼光譜研究[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);1994年01期
9 胡林華,戴松元,王孔嘉;溶膠-凝膠法制備的納米TiO_2結(jié)構(gòu)相變及晶體生長(zhǎng)動(dòng)力學(xué)[J];物理學(xué)報(bào);2003年09期
10 韓杰,鄒廣田,崔田,劉冰冰,潘耀武,高春曉,楊海濱;Sr_2Bi_4Ti_5O_(18)的壓致結(jié)構(gòu)相變[J];高壓物理學(xué)報(bào);1998年03期
相關(guān)會(huì)議論文 前10條
1 王哲明;;甲酸鹽的變溫結(jié)構(gòu)和結(jié)構(gòu)相變[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第13分會(huì):晶體工程[C];2014年
2 陳艷萍;龍毅;萬(wàn)發(fā)榮;;用商用Gd制備的Gd_5Si_(1.85)Ge_(2.15)的結(jié)構(gòu)變化研究[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
3 周赫田;劉麗玲;張樹(shù)霖;周學(xué)秋;商玉生;王彥云;姚振益;;高壓下BaF_2的喇曼光譜和壓力相變[A];第二屆全國(guó)光散射學(xué)術(shù)會(huì)議論文集(上)[C];1983年
4 陳鎮(zhèn)平;薛運(yùn)才;薛人中;李濤;代海洋;陳靖;;Zn/Fe摻雜RBa_2Cu_(3-x)M_xO_(7-δ)超導(dǎo)體系結(jié)構(gòu)相變及局域電子結(jié)構(gòu)特征的正電子研究[A];第十一屆全國(guó)正電子湮沒(méi)譜學(xué)會(huì)議論文集[C];2012年
5 趙智;左健;;PbWO_4微晶高壓結(jié)構(gòu)相變的Raman光譜研究[A];第十七屆全國(guó)光散射學(xué)術(shù)會(huì)議摘要文集[C];2013年
6 于華民;郭星原;劉瑩;許大鵬;;微區(qū)Raman光譜在TiO_2高壓結(jié)構(gòu)相變研究中的應(yīng)用[A];第十四屆全國(guó)光散射學(xué)術(shù)會(huì)議論文摘要集[C];2007年
7 李領(lǐng)偉;曹世勛;曹桂新;敬超;張金倉(cāng);;氧摻雜Y_(0.8)Ca_(0.2)Ba_2Cu_3O_y體系中結(jié)構(gòu)相變與電荷轉(zhuǎn)移的正電子實(shí)驗(yàn)研究[A];第九屆全國(guó)正電子譜學(xué)會(huì)議論文集[C];2005年
8 李俊;周顯明;梁萬(wàn)珍;經(jīng)福謙;;LiTaO_3晶體高壓結(jié)構(gòu)相變的理論研究[A];第四屆全國(guó)爆炸力學(xué)實(shí)驗(yàn)技術(shù)學(xué)術(shù)會(huì)議論文集[C];2006年
9 王哲明;;稀土-甲酸-銨鹽:手性、磁性、結(jié)構(gòu)相變和介電異常[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第06分會(huì):稀土材料化學(xué)及應(yīng)用[C];2014年
10 侯碧輝;郭常新;李碧琳;葵劍云;;以Mn~(2+)為標(biāo)記的ESR研究ZnS的結(jié)構(gòu)相變[A];第五屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1988年
相關(guān)博士學(xué)位論文 前10條
1 張宇航;Ag_2Te與As_2Te_3的高壓行為研究[D];吉林大學(xué);2016年
2 劉廣韜;高壓下典型二元化合物結(jié)構(gòu)和相變的實(shí)驗(yàn)和理論研究[D];吉林大學(xué);2015年
3 郭永亮;新型釷基核材料在高壓下的晶體結(jié)構(gòu)相變及穩(wěn)定性研究[D];華東師范大學(xué);2017年
4 楊西貴;碳納米管及其限域體系的高壓結(jié)構(gòu)相變和超硬相研究[D];吉林大學(xué);2017年
5 葉翔;納米體系結(jié)構(gòu)相變及物性的分子動(dòng)力學(xué)模擬[D];復(fù)旦大學(xué);2007年
6 程本源;二氧化釩準(zhǔn)一維微/納米材料的合成及高壓結(jié)構(gòu)相變研究[D];吉林大學(xué);2015年
7 路雙臣;典型碳納米材料的高壓結(jié)構(gòu)相變研究[D];吉林大學(xué);2013年
8 楊雪;典型含氧八面體金屬氧化物的高壓結(jié)構(gòu)相變研究[D];吉林大學(xué);2014年
9 張莉;MgO-FeO和Fe-Ni-S體系的高溫高壓研究及其地球物理意義[D];西南交通大學(xué);2006年
10 周丹;SnTe高壓結(jié)構(gòu)相變與物性研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 韋樹(shù)波;鹵化銫的高壓結(jié)構(gòu)相變和物性研究[D];吉林大學(xué);2016年
2 許可;高壓下NbSe_2及NaNbO_3/NaTaO_3的結(jié)構(gòu)相變研究[D];吉林大學(xué);2016年
3 趙文蘋(píng);含磺酸基陰離子化合物的合成、結(jié)構(gòu)及介電性質(zhì)研究[D];東南大學(xué);2016年
4 曹平;電場(chǎng)對(duì)高壓下受限水結(jié)構(gòu)相變影響的研究[D];南京師范大學(xué);2016年
5 李全一;二氧化碳的高壓結(jié)構(gòu)相變理論研究[D];遼寧大學(xué);2013年
6 劉海平;高壓下釩的結(jié)構(gòu)相變的第一性原理計(jì)算研究[D];揚(yáng)州大學(xué);2008年
7 黃偉軍;鐵的高壓電學(xué)及結(jié)構(gòu)相變研究[D];吉林大學(xué);2006年
8 王軍國(guó);石英界面處液態(tài)水的沖擊結(jié)構(gòu)相變[D];西南交通大學(xué);2012年
9 張興;結(jié)構(gòu)相變路徑選擇的交替迭代求解算法[D];復(fù)旦大學(xué);2011年
10 李印威;高壓下氫化鈣和氧化錫結(jié)構(gòu)相變的第一性原理研究[D];吉林大學(xué);2008年
本文編號(hào):1722336
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1722336.html