電爐渣熱態(tài)改質(zhì)對其鐵組分回收與膠凝活性影響的研究
本文選題:電爐渣 切入點:熱態(tài)改質(zhì) 出處:《北京科技大學(xué)》2017年博士論文
【摘要】:目前,直接利用各種鋼渣的難度很大,必須經(jīng)過改變成分(改質(zhì))、礦相結(jié)構(gòu)、活性等,才能進行高附加值應(yīng)用。本文在國家"十二五" 863項目子課題"萬噸級液態(tài)鋼渣在線改質(zhì)示范工程"(編號2011AA06A105)的資助下,開展了對山東萊蕪鋼鐵集團電爐渣熱態(tài)改質(zhì)的研究,通過降低堿度以改變電爐渣的礦物組成與微觀結(jié)構(gòu),進而提高改質(zhì)渣鐵尖晶石的析出量以提高其鐵回收率,同時改質(zhì)渣磁選后尾渣的膠凝活性也得到提高,提高了電爐渣資源化利用的附加值。本研究為電爐渣源頭熱態(tài)改質(zhì)提供理論與技術(shù)指導(dǎo),實現(xiàn)電爐渣"鐵"、"渣"、"熱"三利用。本研究以河沙為改質(zhì)劑,研究了熱態(tài)改質(zhì)過程中電爐渣顯熱熔化改質(zhì)劑的能力。為了熱態(tài)改質(zhì)不增加額外能量,計算了電爐渣熱態(tài)改質(zhì)的熱平衡過程,得到了最大改質(zhì)冷料的加入量。熔渣改質(zhì)河沙摻量的理論最佳區(qū)間為11%~24%,此時,改質(zhì)渣的堿度為1.62~1.19,熔渣顯熱的利用效率高,改質(zhì)效果好。河沙摻量接近11%時,改質(zhì)熔渣的流動性較好;河沙摻量接近24%時,改質(zhì)熔渣的堿度較低。本研究以河沙為改質(zhì)劑,研究了電爐渣熱態(tài)改質(zhì)過程的固相反應(yīng)熱力學(xué)過程,為改質(zhì)過程所生成的礦物提供了理論指導(dǎo)。系統(tǒng)研究了渣堿度對改質(zhì)渣的鐵回收率、礦物組成與微觀結(jié)構(gòu)影響的規(guī)律,探討了改質(zhì)渣鐵回收率與礦物組成的關(guān)系,研究表明空冷與水冷改質(zhì)渣的堿度分別為1.3與1.42時,改質(zhì)渣的鐵尖晶石含量大,而其它礦物含量較低,改質(zhì)渣的鐵回收最大。研究了冷卻制度對改質(zhì)渣鐵回收率、礦物組成與微觀結(jié)構(gòu)影響的規(guī)律,另外,采用高溫共聚焦激光顯微鏡,分析了改質(zhì)熔渣冷卻的析晶路線與TTT圖,研究表明鐵尖晶石在高溫階段析出,高于其它礦物的析出溫度。提出了電爐渣熱態(tài)改質(zhì)的優(yōu)化工藝參數(shù):改質(zhì)渣在1500℃保溫60 min后,以20℃/min的速率,降溫到1375℃,并保溫30 min,然后直接進行水淬。本研究以尾礦、粉煤灰、煤矸石與化學(xué)純Al2O3為改質(zhì)劑,通過熔融還原法以消除Fe含量對改質(zhì)渣的膠凝活性的影響,利用DSC圖譜的放熱峰面積,判斷改質(zhì)渣玻璃相含量,采用拉曼光譜計算玻璃相的網(wǎng)絡(luò)聚合度,以判斷其活性。系統(tǒng)研究了堿度與冷卻制度對改質(zhì)渣的膠凝活性、礦物組成、玻璃相含量及其活性的影響,研究表明空冷與水冷改質(zhì)渣的堿度分別為0.9與1.5時,其玻璃相含量大,礦物活性高,改質(zhì)渣的膠凝活性最大。研究了膠凝活性與其礦物組成、玻璃相含量及其活性的關(guān)系,當改質(zhì)渣玻璃相含量較大,反應(yīng)活性高時,改質(zhì)渣的膠凝活性較高,當玻璃相析出高活性的礦物時,改質(zhì)渣的膠凝活性進一步加大,為進一步開發(fā)出高附加值產(chǎn)品提供理論基礎(chǔ)。在山東萊蕪鋼鐵集團100t電爐廠對電爐渣進行熱態(tài)改質(zhì)的中間試驗,開發(fā)出了中試改質(zhì)工藝流程,優(yōu)化了改質(zhì)劑原料和用量,中試結(jié)果理想地驗證了實驗室試驗結(jié)果。
[Abstract]:At present, the direct use of all kinds of steel slag is very difficult, must pass through the changing composition (modified), mineral phase structure, activity, to high value-added applications. In 12th Five-Year the national "863 project" million tons of steel slag modified online demonstration project "(No. 2011AA06A105) under the support of carry out research on Shandong Laiwu iron and steel group electric furnace slag thermal modification, by reducing the alkalinity to change the mineral composition and microstructure of electric furnace slag, and then improve the precipitation of modified slag and iron spinel to increase the recovery rate of iron, and modified slag after magnetic separation tailings cementitious activity is also improved, improve the added value of furnace slag utilization. This research provides theoretical and technical guidance for the source of thermal electric furnace slag modification, realize the electric furnace slag iron," slag "," hot three ". In this study, using sand as the modifier, the modified thermal electric slag quality process Sensible heat melting agent. In order to change the ability of thermal modification without extra energy, the heat balance process furnace slag thermal modification of the calculation, got the maximum amount of modified cold material. The best theoretical interval slag modified river sand content ranged from 11% to 24%, at the same time, alkalinity modification the slag is 1.62 ~ 1.19, the sensible heat of slag with high efficiency and good effect. The modified river sand content is close to 11%, the liquidity of modified slag is better; sand content is close to 24%, the basicity of slag modification is low. In this study, the river sand as the modifier, solid phase the thermodynamic process of furnace slag thermal modification process, provides a theoretical guidance for the modified process generated. Mineral slag basicity on iron recovery rate of modified slag was studied, the effects of mineral composition and microstructure of modified slag and iron recovery rate and mineral composition are discussed research shows that air cooling and water cooling, change Alkalinity matter slag were 1.3 and 1.42, the content of modified iron spinel slag, and other mineral content is low, the modified slag was studied. The maximum recovery of iron cooling system on the modified slag and iron recovery rate, influence of the mineral composition and microstructure of the law, in addition, the Jiao Jiguang temperature copolymerization microscope. Analysis of the modified slag cooling crystallization route and TTT diagram, studies show that iron spinel precipitated at high temperature stage, precipitation temperature is higher than that of other minerals. The optimization of furnace slag thermal modification: modification of slag at 1500 DEG C for 60 min, at a rate of 20 DEG /min, down to 1375 C, and the insulation of 30 min, then direct the water quenched. In this study, tailings, fly ash, coal gangue and pure chemical Al2O3 as modifying agent, in order to eliminate the influence of Fe content on the cementitious activity of modified slag by smelting reduction method using heat peak area map DSC, modified judgment Slag glass phase content, the calculation of degree of polymerization of network of glass phase by Raman spectroscopy, to determine the activity of basicity and cooling system. The system of modified slag cementitious activity, mineral composition, effect of glass phase content and activity, studies show that the basicity of air cooling and water cooling, the modified slag were 0.9 and 1.5 when the glass phase content, mineral activity and high cementitious activity of modified slag. The cementitious activity and mineral composition of glass phase, relationship between content and activity, when the modified slag glass phase content is large, high reaction activity, high cementitious activity of modified slag, when the glass phase precipitation the high activity of minerals, the cementitious activity of modified slag was further increased, for the further development of high value-added products and provide a theoretical basis. The middle test thermal modification of electric furnace slag in Shandong Laiwu iron and Steel Group 100t electric furnace factory, has developed a pilot modification The raw material and dosage of the modifier are optimized in the process flow. The results of the laboratory test are ideally verified by the results of the pilot test.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:X757
【參考文獻】
相關(guān)期刊論文 前10條
1 趙貴州;李宇;代文彬;蒼大強;;鋼渣基高堿度微晶玻璃的一步法制備及工藝參數(shù)研究[J];工程科學(xué)學(xué)報;2016年02期
2 吳龍;郝以黨;張凱;胡天麒;孫樹衫;;熔融鋼渣資源高效化利用探索試驗[J];環(huán)境工程;2015年12期
3 張亮亮;田廣銀;蒲克元;夏春;王艷兵;;鋼渣改性研究進展[J];環(huán)境工程;2015年12期
4 龍躍;杜培培;李智慧;張良進;張玉柱;;高爐熔渣直接纖維化制備礦渣棉[J];科學(xué)技術(shù)與工程;2015年35期
5 黃世爍;郭敏;張梅;;酸性氧化物對轉(zhuǎn)爐鋼渣的改性作用[J];鋼鐵研究學(xué)報;2015年11期
6 湯慶國;顧小楊;穆小占;孟軍平;王宗浩;梁玉麗;梁金生;;水淬電爐渣制備雙晶相微晶陶瓷的析晶行為[J];人工晶體學(xué)報;2015年10期
7 Hong-ming LONG;Qing-min MENG;Ping WANG;Tie-jun CHUN;Yong-lin YAO;;Preparation of Chromium-iron Metal Powder from Chromium Slag by Reduction Roasting and Magnetic Separation[J];Journal of Iron and Steel Research(International);2015年09期
8 張彥龍;艾立群;張小妹;朱yNY,
本文編號:1700794
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1700794.html