天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

蒲絨纖維集合體油液吸附特性與油水分離性能研究

發(fā)布時(shí)間:2018-03-30 14:48

  本文選題:蒲絨纖維 切入點(diǎn):結(jié)構(gòu)性能 出處:《東華大學(xué)》2017年博士論文


【摘要】:每年在石油開采與加工運(yùn)輸、機(jī)械制造、紡織染整等工業(yè)化生產(chǎn)領(lǐng)域都會(huì)源源不斷地產(chǎn)生大量含油廢水。日常生活中也會(huì)有含油污水的產(chǎn)生,如廚房油煙、廁所污水、人體油脂等,其中工業(yè)化所產(chǎn)生的油污染程度尤為嚴(yán)重,有些已造成了環(huán)境的不可逆破壞。有些天然纖維材料具有吸油能力、可再生、可生物降解等優(yōu)點(diǎn),越來越受到吸油領(lǐng)域的關(guān)注,其中蒲絨纖維就屬于這類資源,但目前大部分蒲絨纖維自生自滅,未得到充分利用,造成了資源的很大浪費(fèi)。本論文以蒲絨纖維為研究對(duì)象,首先從蒲絨單根纖維結(jié)構(gòu)與性能的基礎(chǔ)研究著手,闡述纖維結(jié)構(gòu)和物理化學(xué)性能特點(diǎn),對(duì)比幾種天然纖維集合體對(duì)油液吸附性能;然后通過氣流法與熱粘法對(duì)蒲絨纖維進(jìn)行三維濾芯的制作,設(shè)計(jì)與搭建基于蒲絨濾芯的油水分離裝置,通過結(jié)合蒲絨纖維三維結(jié)構(gòu)成型設(shè)計(jì),最終同步實(shí)現(xiàn)油水分離、蒲絨濾芯離心脫油后循環(huán)利用和油液再回收功能,為蒲絨纖維在油水分離領(lǐng)域應(yīng)用提供依據(jù)和參考。本文主要工作內(nèi)容與結(jié)論包括:1.蒲絨纖維的形態(tài)結(jié)構(gòu)與性能利用掃描電鏡和三維視頻顯微鏡觀測(cè)蒲絨纖維表面和截面結(jié)構(gòu);紅外光譜儀測(cè)定蒲絨紅外吸收光譜,測(cè)定其主要基團(tuán)和組成物質(zhì);用索氏提取法測(cè)試其表面蠟質(zhì)含量等。采用oca15ec光學(xué)接觸角測(cè)量?jī)x測(cè)試評(píng)價(jià)油液在蒲絨纖維表面浸潤(rùn)性能,以幾何平均接觸角法計(jì)算纖維的表面自由能及其極性和非極性分量,分析蒲絨纖維的浸潤(rùn)性能。結(jié)果發(fā)現(xiàn):蒲絨纖維形態(tài)結(jié)構(gòu)與羽絨相似為朵狀纖維,每一朵內(nèi)所含單根纖維的根數(shù)范圍在30~80根,平均長(zhǎng)度為7.9mm,平均徑向?qū)挾葹?4.3μm;分叉出的線形纖維具有類似竹子的縱向形狀結(jié)構(gòu)有若干個(gè)開放式空腔,構(gòu)成蒲絨纖維獨(dú)特的結(jié)構(gòu),可以幫助其保持大量靜止的空氣,增加蒲絨纖維比表面積,有利于油液的吸附和儲(chǔ)存,也增強(qiáng)了蒲絨的浮力性能;蒲絨纖維與木棉纖維有相近的成分,同為纖維素纖維的一種,脂蠟質(zhì)超過10%。蒲絨纖維與水的接觸角約為130°,與植物油的接觸角約為60°,說明蒲絨纖維是親油疏水性纖維。油液在蒲絨纖維層上動(dòng)態(tài)鋪展過程分為三個(gè)階段,0~1000ms為快速鋪展階段,1000~2000ms為緩慢鋪展階段,2000ms以后趨于平穩(wěn)階段。蒲絨纖維表面自由能為45.64mn/m,其中極性分量為2.69mn/m,色散分量為42.94mn/m,色散與極性比值15.96,也表明蒲絨纖維有很好的疏水親油性能。2.蒲絨纖維集合體油液吸附性能采用吸油、保油和吸油浮力性能指標(biāo)評(píng)價(jià)了蒲絨散纖維的吸油性能,并與木棉散纖維的吸油性能進(jìn)行對(duì)比分析;通過氣流成網(wǎng)與熱粘法制作的蓬松蒲絨纖維絮片進(jìn)行了吸油性能測(cè)試,并與木棉纖維絮片的吸油性能進(jìn)行對(duì)比分析。結(jié)果發(fā)現(xiàn):蒲絨散纖維吸油倍率11.91g/g,為自身質(zhì)量的近12倍,但低于木棉和棉散纖維,木棉纖維25.79g/g,棉纖維14.98g/g。而通過氣流成網(wǎng)與熱粘法制作的蒲絨蓬松絮片吸油倍率為48.40g/g,吸油倍率增加了3倍;木棉蓬松絮片為72.30g/g,吸油倍率增加了2倍。蒲絨散纖維與木棉纖維保油率均在90%左右,棉纖維保油率為80%以上,說明這三種纖維均具有良好的保油性能。蒲絨、木棉和棉散纖維團(tuán)油液浮力性能:在相同條件下三種纖維體積被浸沒一半的時(shí)間均為30s左右;而全部浸沒時(shí)間相差比較大,蒲絨和棉纖維團(tuán)分別為90s和94s,比較接近,而木棉纖維需要147s;完全浸沒在油液中蒲絨和木棉散纖維呈懸浮狀態(tài),棉纖維團(tuán)沉底。3.油水分離裝置與濾材制備提出了一種集油水分離、纖維濾芯離心脫油后循環(huán)利用和油液再回收功能于一體的油水分離裝置,其中錐形內(nèi)筒是分離器的核心部件,它使得油液在離心力的作用下沿著錐形內(nèi)壁逆流至頂端有均勻?qū)ΨQ的槽口處,從而進(jìn)入內(nèi)筒與外筒之間的儲(chǔ)油區(qū),實(shí)現(xiàn)了油液收集。采用soildworks軟件設(shè)計(jì)了油水分離器的各零件和全部裝配關(guān)系,試制和搭建出平穩(wěn)運(yùn)行、可以實(shí)現(xiàn)三大功能的油水分離試驗(yàn)機(jī)。通過氣流成網(wǎng)法制備出蒲絨纖維與熱熔粘結(jié)纖維混合均勻并三維隨機(jī)分布的纖網(wǎng),放入三維模具進(jìn)行干熱處理制造出結(jié)構(gòu)性能穩(wěn)定、高孔隙率的圓臺(tái)形油水分離濾芯。蒲絨濾芯與上述設(shè)計(jì)試制機(jī)械裝置結(jié)合實(shí)現(xiàn)對(duì)油水混合物的有效過濾。利用柴油、植物油反復(fù)試驗(yàn),確定三維濾芯體積密度、流速、裝置轉(zhuǎn)速以及離心時(shí)間等試驗(yàn)參數(shù)。4.蒲絨濾芯油水分離效果評(píng)價(jià)采用離心率、油液回收率、吸油倍率、吸水倍率、殘油倍率、過濾效率來評(píng)價(jià)三維蒲絨濾芯油液分離效果,油液和水分別以7.5ml/min和750ml/min的流速進(jìn)入三通管混合,通過細(xì)孔噴頭噴進(jìn)錐形內(nèi)筒里,蒲絨三維濾芯采用0.01g/cm~3、0.02g/cm~3和0.03g/cm~3等3個(gè)不同的體積密度。結(jié)果發(fā)現(xiàn):在蒲絨三維濾芯相同體積密度條件下,植物油突破時(shí)間較柴油長(zhǎng),且隨著濾芯的體積密度的增加,兩種油液的突破時(shí)間差距增大,在0.01g/cm~3時(shí)植物油突破時(shí)間為40min比柴油多10min,對(duì)植物油吸油倍率高于柴油的吸油倍率,在0.01g/cm~3時(shí)植物油最高達(dá)到22.21g/g,而柴油為18.12g/g。隨著纖維體積密度增加對(duì)兩種油液吸油倍率均呈減小趨勢(shì),吸水倍率變化不大,基本維持在自身重量的3倍左右。在油液回收方面,在體積密度0.01g/cm~3、0.02g/cm~3和0.03g/cm~3條件下植物油回收率分別為92.56%,90.18%和89.42%,柴油回收率分別為90.51%,86.90%和83.71%,兩種油液的回收率都達(dá)到83%以上,殘存的油液僅相當(dāng)于所吸收油液的植物油不超過10%,柴油最大約為16%。蒲絨纖維濾芯對(duì)于植物油來講可以至少3次,柴油至少4次循環(huán)使用。蒲絨三維濾芯和木棉三維濾芯都是優(yōu)良的天然油液吸附材料,蒲絨纖維的首次收集到油液量大于木棉,但隨著循環(huán)次數(shù)增加,蒲絨纖維的收集量均低于木棉。5.影響蒲絨纖維集合體油水分離因素纖維與油液性質(zhì)、集合體結(jié)構(gòu)與密度、混合液濃度與流速等因素,都會(huì)對(duì)蒲絨纖維集合體油水分離效果產(chǎn)生影響。通過采用不同油液濃度、不同材料及油水混合流速度,優(yōu)化設(shè)計(jì)參數(shù),實(shí)現(xiàn)吸油量和分離效率的最大化,同時(shí)實(shí)現(xiàn)不同纖維濾芯多次利用。
[Abstract]:Every year in the oil exploitation and transportation and processing, machinery manufacturing, industrial production and other fields of textile dyeing and finishing will Everfount to produce a large number of oily waste water in daily life. There will be oily wastewater, such as kitchen, toilet water, body oils, the oil pollution caused by industrialization is particularly serious, some are caused by environmental the irreversible damage. Some natural fiber materials with oil, renewable, biodegradable and other advantages, has attracted more and more attention in the field of oil, the cattail fiber belongs to this kind of resources, but the majority of cattail fiber has not been fully used, emerge of itself and perish of itself, caused a great waste of resources. In this paper, for the cattail fiber the object of study, first from the basic structure and properties of Purong single fiber to fiber paper structure and physical and chemical properties of several kinds of natural fiber, than the set Fit on the adsorption performance of the oil production; then through the air and hot sticking method for three-dimensional filter of cattail fiber, design and build the oil-water separation device based on filter through a combination of cattail, cattail fiber forming three-dimensional structure design, finally realize synchronous oil-water separation, centrifugal oil filter performance after recycling and oil recovery function for, cattail fiber application in oil-water separation field provide the basis and reference. The main contents and conclusions are as follows: the structure and properties of morphology by scanning electron microscopy and three-dimensional video microscope observation Pu cashmere fiber surface and cross section structure of the 1. cattail fiber; infrared spectroscopy determination of cattail infrared absorption spectra, determination of the main groups and substance use cable; extraction method to test the surface wax content. Using oca15ec optical contact angle measurement for the evaluation of oil in the cattail fiber surface wettability can, The geometric mean method to calculate the contact angle of fiber surface free energy and its polar and non polar component analysis, wettability of cattail fiber. It is found that the cattail fiber morphology and similar to feather flower shaped fiber, single fiber contained in every flower in the root number in the range of 30~80, the average length is 7.9MM. The average radial width of 14.3 mu m; longitudinal linear shape structure with similar bamboo fiber branch with a plurality of open cavity, the structure of cattail fiber unique, can help to keep a large number of static air, increase the cattail fiber specific surface area, is conducive to the adsorption and storage of oil, but also enhance the buoyancy performance cattail; cattail fiber has the similar composition and kapok fiber, with a cellulose fiber, wax over 10%. cattail fiber and water contact angle of about 130 degrees, vegetable oil and the contact angle of about 60 degrees, that cattail The fiber is hydrophobic fibers. The oil in the cattail fiber layer dynamic spreading process is divided into three stages, 0~1000ms for fast spreading phase, 1000~2000ms is slowly spreading stage after 2000ms stable stage. The surface free energy of 45.64mn/m cattail fiber, the polar component of 2.69mn/m, 42.94mn/m dispersion and dispersion components. Polar ratio 15.96, also shows that there is a good natural fiber hydrophobic lipophilic properties of.2. oil adsorption properties of cattail fiber aggregate with oil, oil retention and oil buoyancy performance index to evaluate the absorption properties of cattail loose fiber and kapok, and scattered the absorption properties of fiber were analyzed; through the air into a fluffy cattail fiber wadding net with the hot sticking method of oil production and performance testing, and the absorption properties of kapok fiber wadding were analyzed. The results showed that the cattail fiber oil absorption rate of 11.91g/g, since Nearly 12 times the body quality, but lower than that of kapok and loose cotton fiber, kapok fiber 25.79g/g, cotton fiber and 14.98g/g. by flow into cattail oil absorbency made fluffy flakes and hot sticking method for 48.40g/g, oil absorption rate increased by 3 times; the kapok fluffy flakes as 72.30g/g, oil absorption rate increased 2 times. Cattail fiber with the kapok fiber oil retention rate of around 90%, the cotton fiber oil retention rate is above 80%, that is oil holding good performance of the three kinds of fibers. Cattail, kapok and cotton fiber group oil buoyancy performance: in the three kinds of fiber volume under the same conditions is immersed in half the time are about 30s; total immersion time is larger, relatively close to the cattail and cotton fiber group were 90s and 94S, and 147s of kapok fiber; completely immersed in the oil and natural kapok fiber was suspended and cotton fiber group.3. bottom oil and water separation device and filter The preparation of a set of oil-water separation, oil-water fiber filter centrifugal oil after recycling and recycling functions of the separation device, the conical inner cylinder is the core component of the oil separator, it makes the notch under the action of centrifugal force along the tapered wall to the top with symmetrical countercurrent. To enter into the space between the inner cylinder and the outer cylinder of the storage area, the oil separator is designed. Collect all the parts and all the assembly relation by using SoildWorks software, and set up a trial run smoothly, can realize the three functions of the oil-water separation test machine. The airlaid webs of cattail fiber was prepared with hot melt bonded fiber mixed evenly and three-dimensional random distribution, to produce stable performance of dry heat treatment structure into three-dimensional mold, conical high porosity oil-water separation filter. The filter and the design of test performance For mechanical device combination to achieve effective filtering of the oil-water mixture. Using diesel oil, vegetable oil, repeated tests, to determine the three-dimensional element volume density, velocity, separation effect evaluation test parameters of device speed and centrifugal time.4. Purong filter by centrifugal oil-water ratio, oil recovery, oil absorption rate, absorption rate, residual oil rate, filtration efficiency to evaluate the three-dimensional oil separation effect of cattail filter, oil and water respectively by 7.5ml/min and 750ml/min into the three pipe mixed flow through the pores of nozzle spray into the cone, cylinder, cattail and 0.03g/cm~3 0.01g/cm~3,0.02g/cm~3 3D filter using 3 different density. The results showed that: in the same volume of 3D cattail filter density conditions vegetable oil, the breakthrough time is long and with the increase of diesel oil, the volume density of the filter, increasing two oil breakthrough time gap in vegetable oil 0.01g/cm~3 The breakthrough time for 40min than the diesel 10min on oil absorbency of vegetable oil absorption rate was higher than that of diesel fuel, vegetable oil at 0.01g/cm~3 up to 22.21g/g, and for 18.12g/g. diesel as the fiber volume density increased to two kinds of oil absorption rate decreased, water absorbency changed little, basically maintained at about 3 times its own weight in oil recovery, oil recovery plant in the volume density of 0.01g/cm~3,0.02g/cm~3 and 0.03g/cm~3 under the conditions of rates were 92.56%, 90.18% and 89.42%, diesel oil recovery rate were 90.51%, 86.90% and 83.71%, the two oil recovery rate is above 83%, the remaining oil is only equivalent to the absorption of oil and vegetable oil no more than 10%, the maximum is about 16%. diesel filter for cattail fiber plant oil can be at least 3 times, at least 4 cycles. The diesel filter and filter the three-dimensional 3D Purong kapok are excellent Natural oil absorption material, the cattail fiber first collected oil quantity is greater than the kapok, but with the number of cycles, the collection capacity of cattail fiber was lower than that of the influencing factors of.5. fiber and kapok oil properties of cattail fiber aggregation of oil-water separation, aggregation structure and density, mixture concentration and flow rate and other factors, will have an impact on the separation effect of cattail fiber aggregate water. Through the use of different materials and different concentration of oil, oil-water mixture flow velocity, optimizing design parameters, to achieve maximum absorption and separation efficiency, and achieve different fiber filter and multiple use.

【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ342.86

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 封嚴(yán),肖長(zhǎng)發(fā);高吸油樹脂的新進(jìn)展及應(yīng)用[J];上海環(huán)境科學(xué);2004年02期

2 ;國(guó)外吸油材研制情況[J];交通環(huán)保;1980年01期

3 朱玉清,李克誠(chéng);復(fù)寫原紙吸油量測(cè)定方法及技術(shù)指標(biāo)的確定[J];中國(guó)造紙;1982年06期

4 陳建東;支文芳;徐學(xué)存;張繼杰;胡志聲;;關(guān)于泡沫在過濾吸油過程中使用壽命的研究[J];鐵道勞動(dòng)安全衛(wèi)生與環(huán)保;1991年02期

5 趙雪芹,喬彤森,陳曉燕,管位農(nóng);高效吸油樹脂性能研究[J];石化技術(shù)與應(yīng)用;2000年06期

6 張高奇,周美華,梁伯潤(rùn);高吸油樹脂的研究與發(fā)展趨勢(shì)[J];化工新型材料;2002年01期

7 徐萌;李彥鋒;楊艷;彭巍;;高吸油樹脂材料的研究進(jìn)展[J];化工新型材料;2006年11期

8 江茂生;黃彪;蔡向陽(yáng);周洪輝;祁建民;;紅麻桿高吸油材料吸油特性的研究[J];中國(guó)麻業(yè)科學(xué);2007年06期

9 柳穎;徐明;張洪林;李長(zhǎng)波;馬慧賢;;高吸油樹脂的研究及應(yīng)用進(jìn)展[J];化學(xué)與生物工程;2009年09期

10 官鵬;胡松啟;;丙烯酸酯類接枝型高吸油樹脂的性能研究[J];中國(guó)膠粘劑;2009年10期

相關(guān)會(huì)議論文 前5條

1 吳兆立;吳億成;;吸油粉劑材料的研究及實(shí)踐[A];2004年船舶防污染學(xué)術(shù)年會(huì)論文集[C];2004年

2 劉海東;徐建暉;王佳莉;段為;劉紅文;楊鳴波;何琦;;共聚高吸油樹脂合成及性能研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年

3 何特;王源升;鄧欽沂;臧真娟;王思亮;;紫外輻照時(shí)間對(duì)吸油膨脹橡膠使用性能的影響[A];2012年全國(guó)高分子材料科學(xué)與工程研討會(huì)學(xué)術(shù)論文集(下冊(cè))[C];2012年

4 王樹雷;曹文杰;薛艷;劉婕;朱志謙;李輝;賀澤臣;;苯乙烯-丙烯酸丁酯-丙烯酸十二酯三元共聚高吸油樹脂的合成及性能研究[A];2011年中國(guó)阻燃學(xué)術(shù)年會(huì)會(huì)議論文集[C];2011年

5 王思亮;王源升;鄧欽沂;臧真娟;何特;;PMMA對(duì)聚丙烯酸丁酯高吸油樹脂吸油性能的影響[A];2012年全國(guó)高分子材料科學(xué)與工程研討會(huì)學(xué)術(shù)論文集(上冊(cè))[C];2012年

相關(guān)博士學(xué)位論文 前2條

1 柴文波;纖維基復(fù)合吸油材料的制備及其吸油機(jī)理研究[D];上海大學(xué);2016年

2 曹勝彬;蒲絨纖維集合體油液吸附特性與油水分離性能研究[D];東華大學(xué);2017年

相關(guān)碩士學(xué)位論文 前10條

1 吳衛(wèi)逢;熔體靜電紡絲超細(xì)纖維及溢油處理應(yīng)用研究[D];北京化工大學(xué);2015年

2 游香瑾;蒲絨非織造高蓬松絮片的制備與性能研究[D];東華大學(xué);2016年

3 王繹涵;鎂鋁氧化物復(fù)合高吸油樹脂的合成及性能研究[D];燕山大學(xué);2016年

4 胡靜璇;高吸油樹脂的制備與性能研究[D];武漢工程大學(xué);2016年

5 郭佳效;聚甲基丙烯酸酯類高吸油樹脂的制備[D];天津大學(xué);2012年

6 鄭艷萍;高吸油樹脂的合成及其性能的研究[D];西北師范大學(xué);2012年

7 趙霞;填充型化學(xué)—物理復(fù)合交聯(lián)高吸油樹脂的合成與吸放油性能[D];浙江大學(xué);2004年

8 盧娟;乳液型高吸油樹脂的制備、性能及應(yīng)用[D];浙江大學(xué);2006年

9 肖俠;噴霧干燥法制備微/納米結(jié)構(gòu)高吸油樹脂中空微球[D];湖南大學(xué);2009年

10 徐萍英;含物理交聯(lián)高吸油樹脂的合成和表征[D];浙江大學(xué);2003年



本文編號(hào):1686392

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1686392.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶eefc6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com