釷基熔鹽堆換熱器的實驗與數(shù)值研究
本文選題:TMSR 切入點:熔鹽換熱器 出處:《中國科學院工程熱物理研究所》2017年博士論文
【摘要】:為發(fā)展先進的第四代核電系統(tǒng),中科院于2011年啟動了釷基熔鹽堆核能系統(tǒng)(TMSR)的專項研究。TMSR系統(tǒng)采用高溫氟化鹽作為堆芯的冷卻劑和二回路的傳熱介質(zhì),其具有固有安全性好、系統(tǒng)經(jīng)濟性高、核廢物產(chǎn)生少、防核擴散等技術優(yōu)勢。以高溫氟化鹽(600~700℃)為工質(zhì)的熔鹽換熱器是TMSR系統(tǒng)的關鍵部件,其對系統(tǒng)的經(jīng)濟性和安全性有重要的影響。發(fā)展大型化和實用化的熔鹽換熱器是TMSR系統(tǒng)的現(xiàn)實需求。然而無論是傳統(tǒng)的管殼式還是正處于概念研究階段的新型緊湊式熔鹽換熱器,其在TMSR系統(tǒng)中的應用中均面臨著傳熱特性研究不足的巨大障礙;赥MSR系統(tǒng)發(fā)展的迫切需求,本文開展了 TMSR系統(tǒng)熔鹽換熱器的實驗和數(shù)值研究工作,通過設計和建設熔鹽換熱器實驗系統(tǒng),開展各型熔鹽換熱器試驗件的一系列傳熱性能實驗研究;趯嶒灲Y果,為TMSR系統(tǒng)的實驗裝置設計大型化和實用化的熔鹽換熱器,并借助數(shù)值模擬的手段對設計方案進行分析,以確保系統(tǒng)的安全性。本文第一部分完成了一套熔鹽換熱器實驗系統(tǒng)的設計和建造工作。該實驗系統(tǒng)由主熔鹽回路、次熔鹽回路、閉式氣體循環(huán)回路和水冷循環(huán)回路組成,可以完成不同類型的熔鹽—熔鹽和熔鹽—氣體換熱器的傳熱性能實驗研究,包括傳統(tǒng)的管殼式熔鹽換熱器和新型緊湊式熔鹽換熱器。系統(tǒng)設計過程中重點克服了熔鹽傳熱系統(tǒng)高溫運行和易凍堵的固有特性,其結構的復雜性和功能的完善性均較現(xiàn)有的單回路熔鹽傳熱特性實驗系統(tǒng)有巨大的進步。為提高系統(tǒng)實驗結果的精度,運用不確定度理論全面科學地分析和評定了該系統(tǒng)的測量不確定度。評定結果表明避免在小氣體流量下進行實驗以及提高實驗中熔鹽的進出口溫差是減小系統(tǒng)測量不確定度、提高測量精度的最有效方法。該實驗系統(tǒng)的設計和建成,為熔鹽換熱器的研究和發(fā)展提供了可靠的實驗平臺,具有重要的科學意義。本文第二部分根據(jù)TMSR系統(tǒng)對管殼式熔鹽換熱器的近期需求,設計了三臺管殼式熔鹽換熱器試件并分別完成了傳熱性能實驗。該實驗的完成突破了熔鹽對流傳熱特性只集中于管內(nèi)流動的研究現(xiàn)狀,具有一定的創(chuàng)新性。實驗結果滿足熱平衡要求,表明熔鹽換熱器實驗平臺具有良好的可靠性。實驗分別研究了熔鹽在管程和殼程的對流傳熱特性,分析結果表明:(1)管程熔鹽在過渡流和湍流區(qū)內(nèi)的對流傳熱特性與傳統(tǒng)經(jīng)驗準則吻合良好。層流的對流傳熱特性實驗數(shù)據(jù)較經(jīng)驗準則偏大30%。(2)熔鹽在帶折流板的殼程空間內(nèi)的對流傳熱特性與導熱油存在明顯的差別,表明現(xiàn)有的經(jīng)驗設計準則可能并不適用于折流板管殼式熔鹽—溶鹽換熱器的設計計算。(3)熔鹽—氣體換熱器的傳熱熱阻主要集中于氣體側,當系統(tǒng)熔鹽泵發(fā)生停泵故障時,熔鹽—氣體換熱器的管束中的熔鹽將面臨巨大的凝固堵塞風險;谌埯}換熱器實驗系統(tǒng)的運行經(jīng)驗,初步討論了系統(tǒng)的后續(xù)優(yōu)化方案,內(nèi)容包括系統(tǒng)布局、電加熱系統(tǒng)以及伴熱保溫系統(tǒng)的優(yōu)化。本文第三部分基于管殼式熔鹽換熱器試驗件的實驗結果,協(xié)助完成了 10 MW固態(tài)燃料實驗堆空氣冷卻系統(tǒng)的設計方案。為確保空氣冷卻系統(tǒng)的安全運行,對系統(tǒng)的10 MW熔鹽—空氣換熱器進行了兩方面的數(shù)值研究工作。首先,通過熔鹽單管內(nèi)凝固實驗驗證了 FLUENT的SolidificationMelting模型對熔鹽相變過程預測的準確性,并利用FLUENT分析了管束中熔鹽在熔鹽泵停泵事故工況下的凝固過程,分析結果表明熔鹽泵停泵事故會在15 s內(nèi)引發(fā)管束中的凝固堵塞,危及系統(tǒng)安全;其次,利用FLUENT的多孔介質(zhì)模型解決了管束流量模擬分配所面臨的網(wǎng)格和計算資源限制的關鍵問題,成功地計算了管束中的流量分配結果,計算結果表明熔鹽—空氣換熱器的流量分配方案合理,其管束中的實際流量與平均流量偏差不超過13.14%,由于流量分配不均勻引起的熔鹽過冷凝固風險較小。
[Abstract]:For the development of advanced fourth generation nuclear power system, the Chinese Academy of Sciences in 2011 launched a nuclear power system of thorium based molten salt reactor (TMSR) heat transfer medium coolant of special research on the.TMSR system using high temperature fluoride salt as the core and the two loop, which has good inherent safety, economic system of high nuclear waste, nuclear diffusion technique. At high temperature (600~700 DEG C) for fluoride molten salt medium heat exchanger is a key component of the TMSR system, which has an important effect on the economy and safety. The molten salt and the practical development of large-scale heat exchanger is the practical requirements of the TMSR system. However, no matter is the conventional shell and tube or is in the research phase of the new concept of compact type molten salt heat exchanger and its application in TMSR system are facing enormous obstacles. Lack of research on heat transfer characteristics of TMSR system based on the urgent needs of development, this paper carried out T The MSR system of molten salt heat exchanger experimental and numerical study of heat exchanger, the experimental system through the design and construction of molten salt, to carry out various types of molten salt heat exchanger test a series of experimental study on the heat transfer performance. Based on the experimental results, the molten salt and practical for the design of large-scale experimental device of the TMSR system for the heat exchanger, and the design scheme is analyzed by means of numerical simulation, in order to ensure the safety of the system. In the first part of this paper made a molten salt heat exchanger experimental system design and construction work. The experimental system consists of the main circuit of molten salt, a molten salt loop, closed loop and gas water circulation circuit, experimental research on heat transfer performance of complete different types of molten salt, molten salt and gas heat exchanger, including shell and tube type molten salt the traditional heat exchanger and a novel compact type molten salt heat exchanger. The design process of the system overcomes the key High temperature molten salt heat transfer system and is easy to be frozen the inherent characteristics, the perfection of the complexity and function of the structure are compared with the existing single loop molten salt heat transfer experimental system has great progress. In order to improve the precision of the system by using the experimental results, the uncertainty theory comprehensive scientific analysis and assessment of the measurement system uncertainty evaluation results showed that avoid in small gas flow experiment and the molten salt in the experiment is to reduce the temperature difference between inlet and outlet of the system measurement uncertainty, the most effective way to improve the measurement accuracy. The system designed and built, provides a reliable experimental platform for research and development of heat exchanger for welding salt, it has important scientific significance. In the second part, according to the recent need for shell and tube type molten salt heat exchanger TMSR system, designed three sets of shell and tube heat exchanger with molten salt samples and complete the transfer of Can the experiment. Research status of the experiment to complete breakthrough molten salt to focus only on the convective heat transfer characteristics of pipe flow, has certain innovation. The experimental results meet the requirements of heat balance, showed that the molten salt heat exchanger experimental platform has good reliability. The experiment studied the convective heat transfer characteristics of molten salt in the tube side and shell in the process, analysis results show that: (1) convection heat transfer tube of molten salt in transition and turbulent flow in the region and the traditional empirical criterion are in good agreement with the experimental data. The characteristics of laminar convection heat transfer is relatively large 30%. experience. (2) there are obvious differences of convective heat transfer characteristics and the heat conducting oil in molten salt with a baffle in the shell space, that experience of existing design guidelines may not apply in design of pipe shell type molten salt - soluble salt in the calculation of heat exchanger baffle. (3) the thermal resistance of molten salt - gas heat exchanger mainly focused on the gas side, when the Department of The molten salt pump pump failure, the molten salt bundle of molten salt - gas heat exchanger in will face a huge risk of clogging. The operation experience of solidification of molten salt heat exchanger experimental system based on the preliminary discussion of the subsequent optimization scheme of the system, including system layout, optimization of the electric heating system and with the heat insulation system. The third part of shell and tube heat exchanger experimental results for molten salt based on test pieces, to help complete the design of air cooling system of 10 MW solid fuel reactor. In order to ensure the safe operation of air cooling system, a numerical study on the two aspects of the work of the 10 - MW molten salt system the air heat exchanger. First of all, the FLUENT SolidificationMelting model on the accuracy of the phase change process of molten salt prediction is verified by experimental solidification of molten salt tube and analyzed by FLUENT molten salt pump tube bundle in molten salt pump engineering accident The solidification process under the conditions of the analysis showed that the molten salt pump stopped pumping accident will cause the solidification in the bundle block within 15 s, endanger security of the system; secondly, using porous media FLUENT model solves the key problem of grid computing resource allocation and the limits of the simulation of tube bundle flow, successfully calculated the flow distribution in the bundle, the calculation results show that the molten salt air heat exchanger flow distribution scheme is reasonable, the bundle in the actual flow and the average flow rate deviation is less than 13.14%, because the molten salt flow distribution caused by uneven cooling of solid risk is small.
【學位授予單位】:中國科學院工程熱物理研究所
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TL353.13;TL426
【相似文獻】
相關期刊論文 前10條
1 楊鋒平;趙新偉;羅金恒;張廣利;苗健;王珂;;換熱器管束完整性評價技術研究及應用現(xiàn)狀[J];壓力容器;2012年03期
2 付志鴻;換熱器泄漏的修復[J];壓力容器;2000年06期
3 賴永星,劉敏珊,董其伍;靜止外部流體對換熱器管束動特性的影響分析[J];壓力容器;2004年12期
4 孔林;曲思民;陳春霞;;套筒石灰窯換熱器堵塞的機理及對策[J];山東冶金;2008年S1期
5 高玉弟;;石灰窯換熱器管束內(nèi)結瘤的原因及應對措施[J];科技視界;2013年06期
6 石華;大型固定管板式換熱器管束制造工藝[J];壓力容器;1988年02期
7 薄達;深冷文獻消息(國內(nèi)部分)[J];深冷技術;1992年04期
8 聶清德,郭寶玉,張明賢,侯曾炎,申東雄;換熱器管束的流體彈性不穩(wěn)定性[J];天津大學學報;1993年01期
9 錢伯章;節(jié)能換熱器的現(xiàn)狀及其發(fā)展趨勢[J];能源技術;1994年02期
10 宋少華;加氫換熱器的制造[J];化工裝備技術;1998年05期
相關會議論文 前10條
1 張輝君;呂勝杰;;換熱器管束翻新再造[A];全國第四屆換熱器學術會議論文集[C];2011年
2 施哲雄;薛利杰;王祖悅;;換熱器的風險檢測技術研究[A];壓力容器先進技術——第七屆全國壓力容器學術會議論文集[C];2009年
3 周華盛;王亞;呂青燦;;U型換熱器管束通用試壓工裝的研制[A];第十五次全國焊接學術會議論文集[C];2010年
4 林洪亞;;換熱器管束失效分析與防范[A];第三屆全國化學工程與生物化工年會論文摘要集(下)[C];2006年
5 金廣敏;楊貴冬;;外購換熱器制造檢驗中的幾個問題[A];第八屆全國設備與維修工程學術會議、第十三屆全國設備監(jiān)測與診斷學術會議論文集[C];2008年
6 趙敏;康強利;崔軻龍;孔朝輝;徐奕;;蒸餾裝置常頂換熱器失效分析[A];石油和化工設備管道防腐技術與對策專題研討會文集[C];2010年
7 張宇;劉常鵬;張勁松;付國利;;煤氣換熱器損壞原因分析及解決方案[A];2010全國能源與熱工學術年會論文集[C];2010年
8 陳孫藝;;銅材換熱器管束的制造技術[A];中國機械工程學會壓力容器制造委員會2011年年會暨技術交流會論文集[C];2011年
9 王正方;;灰色決策在常減壓塔頂換熱器改造中的應用[A];全國第四屆換熱器學術會議論文集[C];2011年
10 任紅亮;吳力俊;;換熱器管束的防腐蝕[A];全國第四屆換熱器學術會議論文集[C];2011年
相關博士學位論文 前8條
1 黃劍鋒;基于振動信號SVM的管殼式換熱器堵塞故障診斷方法研究[D];華南理工大學;2016年
2 錢進;釷基熔鹽堆換熱器的實驗與數(shù)值研究[D];中國科學院工程熱物理研究所;2017年
3 李靜;新型異徑布管夾持結構換熱器的研究與開發(fā)[D];鄭州大學;2006年
4 焦鳳;換熱器復雜流道中的強化傳熱研究[D];華南理工大學;2013年
5 王英雙;縱流管殼式換熱器流動與傳熱性能的理論與實驗研究[D];華中科技大學;2011年
6 劉天豐;非對稱管殼式換熱器結構分析及改進中的問題研究[D];浙江大學;2005年
7 孫愛芳;導熱復合材料緊湊型板殼式換熱器關鍵技術研究[D];鄭州大學;2007年
8 馬永其;換熱器固定管板有限元應力分析的進一步研究[D];北京化工大學;2000年
相關碩士學位論文 前10條
1 任峰志;沖壓發(fā)動機中燃料/空氣換熱器設計方法研究[D];哈爾濱工業(yè)大學;2015年
2 王蕊;基于熱流固耦合的換熱器管束數(shù)值模擬分析[D];大連理工大學;2015年
3 高克;套筒石灰窯換熱器管束堵塞后快速檢修技術研究[D];安徽理工大學;2016年
4 徐澤輝;大型羥胺反應冷卻器關鍵技術設計研究[D];華東理工大學;2016年
5 陳磊磊;多晶硅生產(chǎn)中典型換熱器防腐技術研究[D];青海大學;2016年
6 董蓬萊;彈性管束換熱器管束的受力及應力分析[D];山東大學;2016年
7 雷詩毅;非能動余熱排出換熱器流動及傳熱特性的實驗研究[D];西安建筑科技大學;2016年
8 羅朝嘉;梅花形縱向折流板換熱器流動和換熱特性數(shù)值模擬分析[D];南京航空航天大學;2016年
9 晉文娟;換熱器管束剛度對流體彈性不穩(wěn)定性影響的研究[D];天津大學;2015年
10 栗俊芬;繞管換熱器計算方法研究及軟件開發(fā)[D];鄭州大學;2016年
,本文編號:1661160
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1661160.html