p型BiCuSeO基硒氧化物熱電傳輸特性研究
本文選題:BiCuSeO硒氧化物 切入點(diǎn):塞貝克系數(shù) 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:熱電材料能夠直接將廢熱轉(zhuǎn)化為電能,受到廣泛的關(guān)注。由于高溫下優(yōu)良的熱穩(wěn)定性和化學(xué)穩(wěn)定性、低成本及無(wú)毒性,氧化物熱電材料有著潛在的應(yīng)用價(jià)值。其中,具有獨(dú)特晶體結(jié)構(gòu)的BiCuSeO基硒氧化物成為當(dāng)前的研究熱點(diǎn)。BiCuSeO晶格由絕緣的(Bi2O2)2~+氧化物層和導(dǎo)電的(Cu2Se2)2-硒化物層沿四方晶體c軸交替堆疊而成,其中含有離子鍵的(Bi2O2)2~+層充當(dāng)電荷存儲(chǔ)器,具有共價(jià)鍵的(Cu2Se2)2_層為載流子傳輸提供導(dǎo)電通道。此外,BiCuSeO層間弱結(jié)合鍵、重組成元素和獨(dú)特的晶體結(jié)構(gòu)可引起聲子的強(qiáng)烈散射,從而導(dǎo)致本征較低的熱導(dǎo)率。在本文中,結(jié)合傳統(tǒng)的兩步固態(tài)反應(yīng)和感應(yīng)熱壓燒結(jié)工藝,制備了Bi1-xSbxCuSe1-yTeyO、Bi1-xZnxCuSeO1-xSx、BiCu1-xAgxSeO 和 Bi1-2xMgxPbxCuSeO等化合物,并系統(tǒng)研究了不同摻雜或替換方法對(duì)BiCuSeO基硒氧化物熱電傳輸特性的影響。盡管BiCuSeO具有特殊的層狀晶體結(jié)構(gòu),然而其熱電傳輸特性可以假設(shè)為各向同性的。Sb替換增加了載流子濃度,而Te替換引起了相反的變化,因此所有的等價(jià)替換均對(duì)電學(xué)傳輸特性有著顯著的影響,Bi_(0.98)Sb0.02CuSeO在750K時(shí)取得最大的功率因子3.8 μWcm-1K-2。此外,等價(jià)替換對(duì)于總熱導(dǎo)率的降低無(wú)顯著作用。750 K時(shí),BiCuSe0.975Te0.025O具有最大的ZT值0.56,為相同條件下BiCuSeO 的 1.44 倍。通過(guò)Zn和S雙位替換,溫度為750 K時(shí),電導(dǎo)率從BiCuSeO的28.9 S/cm增加到 Bi0.975Zn0.025CuSeO0.975S0.025的43.3 S/cm,且 Bi0.95Zn0.05CuSeO0.95S0.05具有最高的塞貝克系數(shù)360 μV/K。Bi0.95Zn0.05CuSeO0.95S0.05適中的電導(dǎo)率和高的塞貝克系數(shù),使其在750 K時(shí)獲得最大的最大功率因子4.6μWcm-1K-2。由于提高的功率因子抵消了總熱導(dǎo)率的輕微增加,因此,Bi0.95Zn0.05CuSeO0.95S0.05在750 K時(shí)取得最大的ZT值0.68,與BiCuSeO相比,提升了約70%。Ag~+替換Cu~+之后,BiCu_(0.98)Ag0.02SeO和BiCu0.92Ag0.08SeO分別具有最高的電導(dǎo)率36.6 Scm-1和最大的塞貝克系數(shù)350 μVK-1。然而,由于適中的電導(dǎo)率和塞貝克系數(shù),BiCu0.95Ag0.05SeO在750K時(shí)具有最大的功率因子3.67 μWcm-1K-2。同時(shí),BiCu0.95Ag0.05SeO在750 K時(shí)的熱導(dǎo)率低至0.38 Wm-1K-1,最大的ZT值達(dá)到0.72,此值是相同條件下未摻雜BiCuSeO的1.85倍。計(jì)算結(jié)果表明,Ag摻雜BiCuSeO熱電性能的提升主要?dú)w因于帶隙的減少和費(fèi)米面附近態(tài)密度的增加。Bi1-2xMgxPbxCuSeO硒氧化物均由單一的BiCuSeO相組成,且晶體中的取向生長(zhǎng)可以忽略不計(jì)。X射線光譜(XPS)結(jié)果表明,摻雜樣品中Mg和Pb雜質(zhì)均為2~+氧化態(tài),然而除了預(yù)期的Bi3~+之外,較高氧化態(tài)的Bi離子也存在于原始態(tài)和摻雜BiCuSeO化合物中。Mg和Pb雙摻雜顯著增加了電導(dǎo)率,并使樣品具有適中的塞貝克系數(shù)。750K時(shí),功率因子從原始態(tài)BiCuSeO的2.54μWcm-1K-2顯著提高到Bi0.88Mg0.06Pb0.06CuSeO的11.1μWcm-1K-2。由于Mg和Pb雜質(zhì)引入的聲子點(diǎn)缺陷散射,雙摻雜進(jìn)一步降低了晶格熱導(dǎo)率。因此,Bi0.88Mg0.06Pb0.06CuSeO在750 K時(shí)取得最大的ZT值1.19,該值是相同條件下未摻雜BiCuSeO的3.1倍。
[Abstract]:Thermoelectric materials can convert waste heat directly into electric energy, which has attracted wide attention. Because of its excellent thermal and chemical stability at high temperature, low cost and non-toxicity, oxide thermoelectric materials have potential application value. The BiCuSeO based selenium oxide with unique crystal structure has become a hot research topic. The BiCuSeO crystal lattice is composed of the insulating Bi2O2O2-oxide layer and the conductive Cu2Se2Se2-selenide layer alternately stacked along the c-axis of the tetragonal crystal, in which a layer of Bi2O2Se containing ionic bonds acts as a charge storage. In addition, the weak binding bond between BiCuSeO layers, which recombines into elements and unique crystal structures, can cause strong scattering of phonons, resulting in lower intrinsic thermal conductivity. Bi1-xSbxCuSe1-yTeyOU Bi1-xZnxCuSeO1-xSxSxSiCuCuSe1-xSxSeO and Bi1-2xMgxPbxCuSeO were prepared by conventional two-step solid-state reaction and induction hot-pressing sintering process. The effects of different doping or substitution methods on the thermoelectric transport properties of BiCuSeO based selenium oxides were studied systematically. Although BiCuSeO has a special layered crystal structure, However, its thermoelectric transport properties can be assumed that the isotropic Sb substitution increases the carrier concentration, while the Te substitution causes the opposite change. Therefore, all equivalent substitutions have a significant effect on the electrical transmission characteristics. The maximum power factor of 3.8 渭 Wcm-1K-2 is obtained at 750K. Equivalent substitution has no significant effect on the decrease of total thermal conductivity. BiCuSe0.975Te0.025O has the largest ZT value of 0.56, which is 1.44 times of that of BiCuSeO under the same conditions. The conductivity of Bi0.95Zn0.05CuSeO0.95S0.05 increased from 28.9S / cm of BiCuSeO to 43.3s / cm of Bi0.975Zn0.025CuSeO0.975S0.025, and Bi0.95Zn0.05CuSeO0.95S0.05 had the highest Sebek coefficient of 360 渭 V / K.Bi0.95Zn0.05CuSeO0.95S0.05 and high Sebeck coefficient. The maximum power factor is 4.6 渭 Wcm-1K-2 at 750K. Because the increase of power factor counteracts the slight increase in total thermal conductivity, Bi0.95Zn0.05CuSeO0.95S0.05 obtains the largest ZT value of 0.68 at 750K, compared with BiCuSeO. The highest conductivity of 36.6 Scm-1 and the maximum coefficient of Saebeck of 350 渭 VK-1 were obtained for BiCuO 0.98 Ag0.02SeO and BiCu0.92Ag0.08SeO, respectively. At 750K, BiCu0.95Ag0.05SeO has the maximum power factor 3.67 渭 Wcm-1K-2.The thermal conductivity of BiCu0.95Ag0.05SeO at 750K is as low as 0.38Wm-1K-1SeO, and the maximum ZT value is 0.72, which is 1.85 times that of undoped BiCuSeO under the same conditions. The results show that the improvement of BiCuSeO thermoelectric properties is mainly due to the decrease of band gap and the increase of density of states near Fermi surface. The selenium oxide of Bi _ (1-2) x mg _ (x) Pb _ (xCuSeO) is composed of a single BiCuSeO phase. The orientation growth in the crystal can be neglected. The results of X-ray spectroscopy show that the mg and Pb impurities in the doped samples are both 2-oxidation states, but in addition to the expected Bi _ 3 ~, The higher oxidation state Bi ions also exist in the original state and the doped BiCuSeO compounds, which increase the conductivity of the samples significantly, and make the samples have moderate Seebeck coefficient (.750K). The power factor increased significantly from 2.54 渭 Wcm-1K-2 of the original BiCuSeO to 11.1 渭 Wcm-1K-2 of Bi0.88Mg0.06Pb0.06CuSeO. Due to the phonon defect scattering induced by mg and Pb impurities, Bi0.88Mg0.06Pb0.06CuSeO obtained the largest ZT value of 1.19 at 750K, which is 3.1 times of that of undoped BiCuSeO under the same condition.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB34
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 成波;劉勇;劉大博;;p型Ca、Ni雙摻BiCuSeO層狀氧化物的熱電性能[J];材料熱處理學(xué)報(bào);2016年08期
2 LIU YaoChun;LAN JinLe;ZHANG BoPing;LIN YuanHua;NAN CeWen;;Thermoelectric transport properties of Bi CuSeO with embedded La0.8Sr_(0.2)CoO_3 nanoinclusions[J];Science China(Technological Sciences);2016年07期
3 吳文花;劉吉波;湯杰雄;王志堅(jiān);蘇正夫;;溶劑熱法合成碲化鉍納米粉末及其熱電性能研究[J];稀有金屬與硬質(zhì)合金;2016年01期
4 岳賢強(qiáng);朱鐵軍;趙新兵;;PbTe_(0.8)Se_(0.2)基熱電材料載流子濃度優(yōu)化與Mg合金化[J];材料科學(xué)與工程學(xué)報(bào);2015年05期
5 岳賢強(qiáng);朱鐵軍;趙新兵;;Na摻雜PbTe_(0.8-x)Se_(0.2)S_x合金的熱電性能[J];中國(guó)科技論文;2015年10期
6 張騏昊;徐磊磊;王連軍;江莞;;Se摻雜量對(duì)n型Bi_2Te_(3-x)Se_x微結(jié)構(gòu)及熱電性能的影響[J];無(wú)機(jī)材料學(xué)報(bào);2014年11期
,本文編號(hào):1557768
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1557768.html