1.8米望遠(yuǎn)鏡高階像差測量與補(bǔ)償
本文關(guān)鍵詞:1.8米望遠(yuǎn)鏡高階像差測量與補(bǔ)償 出處:《中國科學(xué)院光電技術(shù)研究所》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 天文望遠(yuǎn)鏡 自適應(yīng)光學(xué) 高階像差 遠(yuǎn)場成像
【摘要】:在地基大口徑望遠(yuǎn)鏡對天體目標(biāo)進(jìn)行高分辨力成像觀測的過程中,自適應(yīng)光學(xué)系統(tǒng)在對大氣湍流進(jìn)行校正、改善成像質(zhì)量方面發(fā)揮了極其重要的作用。但是,實(shí)際應(yīng)用的自適應(yīng)光學(xué)系統(tǒng)都處于完全未補(bǔ)償和完全補(bǔ)償兩種極端情況之間,屬于部分校正自適應(yīng)光學(xué)系統(tǒng)。自適應(yīng)光學(xué)對于低階像差可以實(shí)現(xiàn)幾乎完全校正,但是對于高階像差校正能力有限,自適應(yīng)光學(xué)系統(tǒng)中不能校正的高階像差部分是本論文重點(diǎn)討論的對象。本文的研究背景是基于原1.8米望遠(yuǎn)鏡的127單元自適應(yīng)光學(xué)系統(tǒng),希望通過測量原有系統(tǒng)無法校正的高階像差部分,系統(tǒng)的分析影響原有127單元部分補(bǔ)償系統(tǒng)遠(yuǎn)場圖像質(zhì)量的因素,研究例如變形反射鏡閉環(huán)引入的高階像差、望遠(yuǎn)鏡主光路、自適應(yīng)光學(xué)系統(tǒng)光路中的靜態(tài)高階像差,最后通過圖像事后處理的方式對靜態(tài)高階像差進(jìn)行精確補(bǔ)償,以達(dá)到提升遠(yuǎn)場成像質(zhì)量的目的。同時(shí)較系統(tǒng)的分析在建的4米望遠(yuǎn)鏡將來可能面臨的無法校正的高階像差的各個(gè)因素。具體工作如下:1.整理分析了天文望遠(yuǎn)鏡中的誤差來源對望遠(yuǎn)鏡性能的影響,包括望遠(yuǎn)鏡系統(tǒng)誤差和自適應(yīng)光學(xué)系統(tǒng)誤差,重點(diǎn)分析了自適應(yīng)光學(xué)中遠(yuǎn)場圖像的構(gòu)成和自適應(yīng)光學(xué)部分校正獲得的圖像特性,以及高階像差對遠(yuǎn)場圖像的影響。2.系統(tǒng)的分析了1.8米望遠(yuǎn)鏡系統(tǒng)自適應(yīng)光學(xué)的當(dāng)前性能和現(xiàn)有的成像質(zhì)量,針對高階像差測量需求分析了影響哈特曼測量精度的誤差因素,并設(shè)計(jì)高階測量哈特曼波前傳感器對1.8米望遠(yuǎn)鏡高階像差進(jìn)行測量。確定1.8米望遠(yuǎn)鏡高階像差測量實(shí)驗(yàn)方案,由于其中低階像差測量光路和高階像差測量光路是非共光路,所以對其中的非共光路像差提出標(biāo)定方法,來準(zhǔn)確測量系統(tǒng)高階像差。提出了系統(tǒng)低階像差和高階像差測量方案以及系統(tǒng)動(dòng)態(tài)閉環(huán)高階像差測量方案。3.搭建了1.8米望遠(yuǎn)鏡高階像差測量實(shí)驗(yàn)系統(tǒng),通過測量原有127單元自適應(yīng)光學(xué)系統(tǒng)無法校正的高階像差部分,分析了1.8米望遠(yuǎn)鏡系統(tǒng)望遠(yuǎn)鏡主光路、自適應(yīng)光學(xué)系統(tǒng)光路中的靜態(tài)高階像差情況,以及變形反射鏡閉環(huán)引入的像差情況,對現(xiàn)有的自適應(yīng)光學(xué)系統(tǒng)校正能力覆蓋范圍進(jìn)行了劃分,仿真分析了高階像差補(bǔ)償后的遠(yuǎn)場圖像。最后提出了1.8米望遠(yuǎn)鏡自適應(yīng)光學(xué)系統(tǒng)高階像差的補(bǔ)償設(shè)計(jì),通過圖像事后處理的方式對靜態(tài)高階像差進(jìn)行精確補(bǔ)償,達(dá)到了提升遠(yuǎn)場成像質(zhì)量的目的。4.根據(jù)4米望遠(yuǎn)鏡誤差分配的要求,對4米望遠(yuǎn)鏡像差控制優(yōu)化進(jìn)行了設(shè)計(jì)。仿真分析了4米望遠(yuǎn)鏡自適應(yīng)光學(xué)系統(tǒng)布局,對變形鏡擬合誤差、校正行程等進(jìn)行了估計(jì);分析了自適應(yīng)光學(xué)系統(tǒng)對4米望遠(yuǎn)鏡系統(tǒng)靜態(tài)像差的校正能力,包括光學(xué)加工誤差要求、蜂窩鏡主鏡壓印效應(yīng)分析、系統(tǒng)對準(zhǔn)誤差要求、次鏡支撐筋遮攔要求等,以及對全系統(tǒng)自適應(yīng)光學(xué)校正后的靜態(tài)殘差進(jìn)行了估計(jì)。
[Abstract]:Adaptive optics system plays a very important role in correcting atmospheric turbulence and improving imaging quality in the process of high-resolution imaging of celestial objects by ground-based large-aperture telescopes. The practical applications of adaptive optics systems are between completely uncompensated and fully compensated two extreme cases, which belong to partially corrected adaptive optical systems. Adaptive optics can achieve almost complete correction for low order aberrations. However, the correction ability for higher-order aberrations is limited. The uncorrected high-order aberrations in adaptive optical systems are the focus of this paper. The background of this paper is a 127-element adaptive optical system based on the original 1.8-meter telescope. It is hoped that by measuring the higher-order aberrations which cannot be corrected by the original system, the factors that affect the quality of far-field images of the original 127 unit partial compensation system can be analyzed. For example, the high-order aberrations introduced by the deformable mirror closed-loop, the main optical path of the telescope, and the static high-order aberrations in the optical path of the adaptive optical system are studied. Finally, the static higher-order aberration is compensated accurately by image post-processing. In order to improve the quality of far-field imaging, the factors of uncorrectable higher-order aberrations that the 4m telescope under construction may face in the future are analyzed systematically. The specific work is as follows:. 1. The influence of the error sources on the performance of the telescope is analyzed. It includes telescope system error and adaptive optics system error. The composition of far field image in adaptive optics and the image characteristics obtained by adaptive optics part correction are analyzed. The effects of high order aberrations on far field images. 2. The current performance of adaptive optics and the existing imaging quality of 1.8m telescope system are systematically analyzed. According to the demand of high-order aberration measurement, the error factors affecting Hartmann measurement accuracy are analyzed. A high-order measurement Hartman wavefront sensor is designed to measure the high-order aberration of the 1.8-meter telescope, and the experimental scheme of high-order aberration measurement for the 1.8-meter telescope is determined. Because the low order aberration measurement optical path and the high order aberration measurement optical path are non-common optical path, a calibration method is proposed for the non-common optical path aberration. The system low order aberration and high order aberration measurement scheme and the system dynamic closed loop high order aberration measurement scheme. 3. A 1.8-meter telescope high-order aberration measurement experimental system is built. By measuring the high-order aberrations which cannot be corrected by the original 127-unit adaptive optics system, the static high-order aberrations in the main optical path of the 1.8-meter telescope and the optical path of the adaptive optics system are analyzed. And the aberration caused by the deformable mirror closed-loop, the coverage of the correction ability of the existing adaptive optical system is divided. The far-field images after high-order aberration compensation are simulated and analyzed. Finally, the compensation design of high-order aberration for 1.8-meter telescope adaptive optical system is proposed. The static higher-order aberration is compensated accurately by image post-processing to improve the far-field imaging quality. 4. According to the requirements of error allocation of 4m telescope. The design of aberration control optimization for 4-meter telescope is carried out. The layout of adaptive optical system of 4-meter telescope is simulated and the fitting error of deformable mirror and the correction stroke are estimated. The ability of adaptive optics system to correct the static aberration of 4 m telescope system is analyzed, including the requirements of optical processing error, the analysis of imprint effect of honeycomb mirror primary mirror, and the requirement of system alignment error. In addition, the static residuals of adaptive optics correction for the whole system are estimated.
【學(xué)位授予單位】:中國科學(xué)院光電技術(shù)研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TH751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳京元;和成;張定穩(wěn);和福瑞;和漢龍;熊耀恒;;麗江觀測站1.8米望遠(yuǎn)鏡自適應(yīng)光學(xué)系統(tǒng)性能初步理論估計(jì)[J];天文研究與技術(shù);2013年03期
2 張景旭;;地基大口徑望遠(yuǎn)鏡系統(tǒng)結(jié)構(gòu)技術(shù)綜述[J];中國光學(xué);2012年04期
3 寧禹;余浩;周虹;饒長輝;姜文漢;;20單元雙壓電片變形鏡的性能測試與閉環(huán)校正實(shí)驗(yàn)研究[J];物理學(xué)報(bào);2009年07期
4 蔡冬梅;姚軍;姜文漢;;液晶空間光調(diào)制器用于波前校正的性能[J];光學(xué)學(xué)報(bào);2009年02期
5 張雨東;姜文漢;史國華;凌寧;戴云;薛麗霞;余翔;饒學(xué)軍;;自適應(yīng)光學(xué)的眼科學(xué)應(yīng)用[J];中國科學(xué)(G輯:物理學(xué) 力學(xué) 天文學(xué));2007年S1期
6 夏雄平;;光學(xué)望遠(yuǎn)鏡的發(fā)明和演變[J];發(fā)明與創(chuàng)新(學(xué)生版);2007年04期
7 姜文漢;;自適應(yīng)光學(xué)技術(shù)[J];自然雜志;2006年01期
8 來曉嵐,趙佳明,盧煥章;DSP+FPGA實(shí)時(shí)信號處理系統(tǒng)[J];電子技術(shù)應(yīng)用;2000年09期
9 許曉軍,陸啟生,劉澤金;剪切干涉儀與哈特曼波前傳感器的波前復(fù)原比較[J];強(qiáng)激光與粒子束;2000年03期
10 鮮浩,姜文漢;波像差與光束質(zhì)量指標(biāo)的關(guān)系[J];中國激光;1999年05期
,本文編號:1405159
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1405159.html