鎳基復合物材料的制備及其在超級電容器上的應用研究
本文關鍵詞:鎳基復合物材料的制備及其在超級電容器上的應用研究 出處:《吉林大學》2017年博士論文 論文類型:學位論文
更多相關文章: 鎳基復合材料 贗電容 改進界面法 團聚 摻雜 導電性 類催化劑
【摘要】:鎳基硫化物,氧化物和氫氧化物為常見的過渡金屬化合物,具有很高的電化學活性。在儲能方面,鎳基化合物作為電活性物質在電極表面及其近表面進行快速的氧化還原反應可以產生贗電容,是很好的法拉第贗電容器電極材料。贗電容器的能量存儲效率要遠遠大于雙電層電容器,這對于填補電池和傳統電容器之間的能量空白是非常重要的。但是,單純的氧化鎳、氫氧化鎳和硫化鎳等鎳基化合物無論是在材料的形貌、結構,還是導電性以及電化學性能方面都很難達到令人滿意的程度,其較寬的禁帶寬度嚴重限制了電子載流子的數量及利用效率。而以這些鎳基化合物為基質組合而成的復合材料則可以利用各元材料的本征特征形成優(yōu)勢互補,從而達到克服上述缺點的目的。另外,各元材料在參與電化學反應的過程中往往伴隨著協同作用的發(fā)生,這無論是對于器件的能量存儲還是轉化都有著很大的促進作用。本論文主要針對鎳基復合材料的合成及其在超級電容器電極材料方面的應用進行了研究,通過優(yōu)化實驗方案避免材料團聚,調控材料形貌和孔隙率,改善材料的導電性以合成均勻分散的納米/微米尺寸電極材料,從而獲得大的比電容及倍率性能、長的使用壽命和高的功率密度。研究工作主要集中在以下幾個方面:1.采用改進界面法及后續(xù)的硫化工作制備了鎳-鋅二元體系化合物材料(Ni1-x Znx OH和NixZn1-x S),探尋避免納米材料團聚的方法,并對所制得的材料進行了物相、形貌和電化學性能表征。在這里,我們使用低密度,與水互溶性良好的DMF(二甲基甲酰胺)溶劑取代了傳統界面方法中所使用的非水溶性有機溶劑,如CCl4和CH2Cl2等。通過這樣的改進之后,原本應用范圍狹小的界面法將具備更加廣泛的用途。在用該方法合成了由Ni1-xZnx OH超薄片組成的三維層狀結構材料后,通過進一步的水熱處理,我們獲得了NixZn1-x S多孔納米球樣品,由于受到柯肯特爾效應(Kirkendall)的作用,在30 nm超小直徑的NixZn1-x S納米顆粒內部形成了豐富的相互連接的納米孔。這樣的結構不僅增大了材料的比表面積(148.4 m2 g-1),而且為離子擴散提供了快速傳輸的通道,有利于獲得高的的比電容和良好的循環(huán)穩(wěn)定性。2.采用一步水熱的方法在泡沫鎳上原位生長了多層Ni1-xZnx S復合物。利用Zn元素摻雜的技術,控制Zn元素在復合物各層中含量的變化來控制形貌的變化。具備不同形貌的多層結構可以提供大范圍的孔徑尺寸分布,為電解液離子的快速進出提供通道并縮短離子遷移程。另外各層之間均是通過原位生長的方法構造的,這對于減小電子在層與層之間的傳輸阻力非常有效,因此其能夠提供良好的電化學性能。通過該種構造方式得到的的多層結構材料不僅能夠獲得高的比電容性能和良好的循環(huán)穩(wěn)定性,而且對于獲得超大倍率性能來說也是非常有效的。3.通過硫化和隨后的水解反應,我們成功合成了一種高質量負載(8.33 mg cm-2)的新型Ni foam-Ni3S2@Ni(OH)2-graphene三明治結構電極(NF-NN-G)。該樣品中Ni3S2和Ni(OH)2的電導率同時得到了提高。其中位于上層的Ni(OH)2表面覆蓋著一層薄的石墨烯膜,位于下層的Ni3S2通過在泡沫鎳上原位硫化而成,主要作為連接Ni(OH)2和泡沫鎳的橋梁。石墨烯不僅增加了Ni(OH)2的結構穩(wěn)定性并且有效地提高了其電化學性能。由于高活性材料負載量的電極的導電性會隨著負載的厚度增加而急劇減小,這種設計對于提高大負載量電極的導電性非常有效,能夠減小電子在傳輸過程中的損失,提高材料的利用率,進而獲得高的電化學性能。4.通過簡單的一步水熱法成功制備了多級三維層狀Zn S/Zn O/Ni9S8/Ni(OH)2復合材料。使用Zn S作為類催化劑材料可持續(xù)生產輔助支撐材料Zn O以充分利用電極的內部空間,Ni9S8和Ni(OH)2則作為主要活性材料參與電化學反應。Zn S在水解成為Zn O后,其副產物H2S可以與溶液中過量的Zn2+反應生成新的Zn S,這一機制可以保證三維結構在空間范圍內理論上無限擴展,為電極材料提供豐富的電活性位點。此外,使用該策略獲得的電極材料中,Ni9S8/Ni(OH)2良好的電化學活性與輔助材料的結構穩(wěn)定性之間具有良好的協同效應,因此可以保證其在獲得優(yōu)異的電化學性能的同時也能夠具備極其優(yōu)秀的循環(huán)性能。
[Abstract]:Nickel sulphide, oxides and hydroxides as transition metal compounds are common, with high electrochemical activity. In terms of storage, nickel based compound as an active substance on the electrode surface and near surface rapid oxidation can produce pseudocapacitive redox reaction, is a very good Faraday PSEUDOCAPACITORS electrode materials for energy storage efficiency. PSEUDOCAPACITORS is much larger than the electric double layer capacitor, which is very important for filling between the battery and the traditional capacitor energy gap. However, pure nickel oxide, nickel hydroxide and nickel sulfide, nickel based compound materials in both the structure, morphology, and electrical conductivity and electrochemical properties are difficult satisfactory, the broad band gap has seriously restricted the number of electron carriers and utilization efficiency. With these compounds as the matrix formed by the combination of complex The material can form complementary advantages using the intrinsic characteristics of each material, so as to achieve the purpose of overcoming the defects. In addition, each element in the material processes involved in the electrochemical reaction is often accompanied by a synergistic effect, whether it is for the energy storage device or transformation has great role in promoting this paper. Mainly for nickel base composite material and its application in the synthesis of super capacitor electrode materials were studied through optimization experiment materials to avoid agglomeration, regulation of material morphology and porosity, conductive materials to improve the synthesis of uniform dispersion of nano / micron size electrode material, so as to obtain the specificcapacitance and rate capability of large, long the service life and high power density. The research work mainly focuses on the following aspects: 1. using Ni Zn two by improved interface method and subsequent curing work Element system of compound material (Ni1-x Znx OH and NixZn1-x S), to explore the way to avoid the agglomeration of nano materials, and the prepared materials for the phase, morphology and electrochemical performance characterization. Here, we use low density, and good water solubility DMF (two methyl formamide) solvent instead of the use of traditional interface method in non water soluble organic solvent, such as CCl4 and CH2Cl2. After the improvement, the narrow scope of the original application interface method will have more extensive use. In the three-dimensional layered materials composed of Ni1-xZnx OH thin films were synthesized by this method, through the hydrothermal treatment further, we obtained the NixZn1-x S porous nanospheres were due to Kirkendall effect (Kirkendall) role in the 30 nm ultra small diameter internal NixZn1-x S nanoparticles formed abundant interconnected nanopores such. The structure not only increases the surface area of the material (148.4 M2 g-1), and provide a fast transmission channel for ion diffusion, is beneficial to obtain high specific capacitance and good cycle stability of.2. by one-step hydrothermal in situ grown on nickel foam multilayer Ni1-xZnx S composites. By Zn doping the change of control technology, the content of Zn in each layer in the compound to control the morphology. The pore size has a multilayer structure with different morphologies can provide a wide range of distribution, to provide a channel for the rapid import of electrolyte ions and shorten the ion transfer process. In addition between the layers are constructed by in situ growth. This is very effective in the electronic transmission to reduce the resistance between layers, so it can provide a good electrochemical performance. The structures of multilayer structure materials not only can be obtained High specific capacitance and good cycle stability performance, and to get large rate performance is also very effective.3. through vulcanization and subsequent hydrolysis reaction, we successfully synthesized a kind of high quality load (8.33 mg cm-2) of the new Ni foam-Ni3S2@Ni (OH) 2-graphene sandwich electrode structure (NF-NN-G) and Ni Ni3S2. In the sample (OH) 2 and the conductivity is improved. The upper Ni (OH) 2 is covered with a thin layer of graphene film, and in the lower layer by Ni3S2 on nickel foam in situ vulcanization, as main connection Ni (OH) 2 and the bridge of nickel foam graphite. Not only was increased by Ni (OH) 2 of the structural stability and effectively enhance the electrochemical performance. The conductive electrode active material of high load increases with the increase in the thickness of the load decreases sharply, this to improve the design of large load electrode Very effective conductivity, can reduce the loss of electrons in the transmission process, improve the utilization rate of materials, and the electrochemical performance of.4. high by simple one step hydrothermal method preparation of multi-level three-dimensional layered Zn (OH) S/Zn O/Ni9S8/Ni 2 composite material. Using Zn S as catalyst materials for sustainable production the auxiliary support material Zn O in order to make full use of the internal electrode space, Ni9S8 and Ni (OH) 2 as the main active material in electrochemical reactions of.Zn S in Zn O after hydrolysis as its by-product, H2S and excess Zn2+ in the reaction solution to generate a new Zn S, this mechanism can ensure the three-dimensional structure of unlimited expansion in the range of space theory, provide electricity rich active sites as the electrode material. In addition, the use of the strategy to obtain the electrode material, Ni9S8/Ni (OH) between the structure of 2 good electrochemical activity and stability with auxiliary materials With good synergy, it can guarantee excellent electrochemical performance and excellent cycle performance.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TB33;TM53
【相似文獻】
相關期刊論文 前10條
1 陳新麗;李偉善;;超級電容器電極材料的研究現狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質超級電容器研究進展[J];材料導報;2011年15期
3 梓文;;超高能超級電容器[J];兵器材料科學與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期
5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學超級電容器電極材料的研究進展[J];無機材料學報;2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強;超級電容器研究及其應用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應用;2005年03期
相關會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學與物理電源學術年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應用[A];中國化學會第15屆反應性高分子學術討論會論文摘要預印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學學術會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術論壇——2008通信電源學術研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風;陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學術論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設計、制備及性質研究[A];中國化學會第27屆學術年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應的新型超級電容器——多孔碳電極材料的影響[A];中國化學會第27屆學術年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應用學術會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:1403919
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1403919.html