液態(tài)包層復(fù)雜幾何構(gòu)件下的MHD流動(dòng)、傳熱和氚輸運(yùn)研究
本文關(guān)鍵詞:液態(tài)包層復(fù)雜幾何構(gòu)件下的MHD流動(dòng)、傳熱和氚輸運(yùn)研究 出處:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 液態(tài)包層 磁流體 復(fù)雜幾何 流動(dòng)和傳熱 氚輸運(yùn)
【摘要】:聚變堆包層因其適應(yīng)等離子體形狀而結(jié)構(gòu)設(shè)計(jì)相對(duì)復(fù)雜,對(duì)于液態(tài)金屬包層普遍存在幾種共性的幾何構(gòu)件,如突擴(kuò)突縮管道、彎管、分配收集箱等,磁流體在這些復(fù)雜形狀管道內(nèi)流動(dòng)會(huì)出現(xiàn)顯著不同特征的三維磁流體效應(yīng),是包層內(nèi)最為嚴(yán)重的磁流體現(xiàn)象,同時(shí)影響到包層傳熱效果和氚的輸運(yùn),也是液態(tài)金屬包層共有的熱工水力學(xué)問題。為支持聚變液態(tài)包層的研究與發(fā)展,本文對(duì)聚變液態(tài)鋰鉛包層中存在的復(fù)雜幾何構(gòu)件開展了磁流體動(dòng)力學(xué)液態(tài)金屬流動(dòng)、傳熱和氚輸運(yùn)的數(shù)值模擬分析,從程序開發(fā)、程序性能分析和加速方法、復(fù)雜幾何管道的MHD流動(dòng)傳熱特性分析、氚輸運(yùn)關(guān)鍵參數(shù)敏感性分析四個(gè)方面展開分析,具體工作總結(jié)如下:(1)聚變環(huán)境下液態(tài)鋰鉛的流動(dòng)過程是非常復(fù)雜的,受到諸如磁流體動(dòng)力學(xué)(MHD)流的多種物理環(huán)境的耦合影響。圍繞聚變液態(tài)鋰鉛增殖包層內(nèi)存在著MHD流動(dòng)、浮升力及氚輸運(yùn)耦合問題,基于OpenFOAM平臺(tái)根據(jù)不同的邊界耦合方法發(fā)展了多網(wǎng)格單矩陣和雙邊界耦合兩種求解技術(shù)。開發(fā)了 MHD流動(dòng)-熱-電勢-l#輸運(yùn)多物理場耦合程序,并分別開展Shercliff和Hunt算例理論驗(yàn)證、KIT突擴(kuò)和MHD自然對(duì)流實(shí)驗(yàn)驗(yàn)證以及氚輸運(yùn)實(shí)驗(yàn)等相關(guān)驗(yàn)證。驗(yàn)證結(jié)果表明,所開發(fā)的程序適用于聚變環(huán)境下流體高Ha數(shù)和高Gr數(shù)特點(diǎn),計(jì)算結(jié)果具有很好的準(zhǔn)確性和可靠性,可用于液態(tài)包層流動(dòng)、傳熱和氚輸運(yùn)分析。(2)基于所開發(fā)的耦合求解程序開展并行性能分析,開發(fā)GPU異構(gòu)和全GPU加速求解器。針對(duì)CPU并行,分析并行加速性能影響因素,發(fā)現(xiàn)求解算法為求解快慢的主要因素,并行分塊對(duì)并行效率影響明顯。CPU和GPU求解器基于相同算例分別分析其在普通流體、MHD流體、不同求解算法和網(wǎng)格尺寸上的計(jì)算效率。結(jié)果顯示,GPU適合于MHD問題求解,在大網(wǎng)格問題上加速明顯。(3)開展液態(tài)鋰鉛包層中存在的復(fù)雜的幾何構(gòu)件內(nèi)MHD流動(dòng)和傳熱分析,針對(duì)于現(xiàn)有的液態(tài)鋰鉛包層結(jié)構(gòu)進(jìn)行了描述,歸類出共同存在的復(fù)雜幾何構(gòu)件的特征。對(duì)聚變液態(tài)包層復(fù)雜幾何流道,如彎管、分配聯(lián)箱和帶有氦氣流道的管道壁面的MHD流動(dòng)展開了數(shù)值模擬分析,基于管道MHD流動(dòng),展開傳熱耦合特性對(duì)比分析。結(jié)果顯示,氦氣流道使內(nèi)部MHD流出現(xiàn)波動(dòng),壁面耦合效應(yīng)使得壁面附近射流偏小或反向(傳熱)等。(4)氚輸運(yùn)數(shù)值模擬首先針對(duì)分配聯(lián)箱管道進(jìn)行氚濃度分析,隨后針對(duì)管道流開展l#輸運(yùn)關(guān)鍵參數(shù)敏感性分析,包括流動(dòng)速度、磁場大小、壁面導(dǎo)電性能、傳熱效應(yīng)和氚擴(kuò)散系數(shù)等因素對(duì)l#濃度和l#在壁面上的滲透率的影響。結(jié)果顯示流動(dòng)速度分布,特別是靠近壁面的速度分布對(duì)氚在壁面的滲透率的影響顯著,MHD效應(yīng)可減少壁面氚滲透率,隨著磁場強(qiáng)度增加,氚在壁面上的滲透率近似于指數(shù)下降,氚的擴(kuò)散系數(shù)在一定范圍內(nèi)影響的效果較為顯著,且氚溶解度不確定性影響顯著等。本文工作完成了聚變包層復(fù)雜幾何構(gòu)件下的MHD流動(dòng)、傳熱和氚輸運(yùn)研究,在同一個(gè)平臺(tái)開發(fā)了 MHD流動(dòng)和傳熱兩種邊界耦合處理分析程序、氚輸運(yùn)分析程序和雙擴(kuò)散MHD流動(dòng)分析程序,初步建立了液態(tài)鋰鉛增殖包層熱工水力分析和氚輸運(yùn)分析研究工具,掌握了復(fù)雜幾何流道對(duì)MHD流動(dòng)和傳熱的影響特點(diǎn),以及氚輸運(yùn)過程中的敏感參數(shù)特點(diǎn)。
[Abstract]:Fusion reactor blanket because of its adaptability to the plasma shape and structure design is relatively complex, the geometric component of liquid metal cladding exists several common, such as sudden expansion / contraction pipe, pipe, distribution collection box, magnetic fluid flow in these complicated pipeline will appear three-dimensional magnetohydrodynamic effect significantly different characteristics, is the package the most inner layer of magnetic fluid phenomenon is serious, also affect the heat transfer effect of cladding and tritium transport, and liquid metal clad common thermal hydraulics problem. To support the research and development of fusion liquid blanket, this paper carried out the magnetic fluid dynamics of liquid metal flow on the complex geometric components of liquid lithium lead blanket fusion in the layer, heat transfer and tritium transport numerical simulation analysis, from program development, analysis and accelerating method of program performance analysis of MHD flow and heat transfer characteristics of complex geometry pipeline, tritium transport key parameter sensitivity The perceptual analysis of four aspects of analysis, specific work are summarized as follows: (1) the flow process of the liquid lithium lead the fusion of environment is very complex, such as magnetohydrodynamic (MHD) coupling effects of various physical environment. The flow around the fusion liquid LiPb breeder blanket existed in the MHD flow and the buoyancy tritium transport coupling problem, OpenFOAM platform for the development of multi grid single and double coupling matrix for solving the two technology according to the boundary coupling method based on different development. MHD flow heat transport potential -l# multiphysics coupling procedure, and carry out Shercliff and Hunt examples of theoretical verification, KIT expansion and MHD convection experiment and tritium transport experiment were verified. The verification results show that the developed program for fusion environment fluid with high Ha number and Gr number, the calculation results with good accuracy and reliability, availability In the liquid cladding flow, heat transfer and transport of tritium analysis. (2) coupling program developed by carry out parallel analysis based on the development of GPU and GPU heterogeneous accelerated solver. For CPU parallel, parallel analysis influence factors of acceleration performance, found the main factors for solving algorithm speed, parallel to the block.CPU and GPU significantly influence the efficiency of parallel solver based on the same example respectively in the analysis of ordinary fluid, MHD fluid, the calculation efficiency of different algorithms and grid size. The results showed that GPU is suitable for solving MHD problems, the grid problem plus speed is obviously. (3) to carry out the analysis of flow and heat transfer in complex geometry the component liquid lithium lead blanket in MHD, according to the existing liquid lithium lead blanket structure are described, classified the characteristics of complex geometry are common. The fusion liquid blanket complex geometric flow, such as pipe, branch The wall of the MHD pipe flow distribution header with helium channel launched the numerical simulation analysis of pipeline MHD flow based on analysis of heat transfer coupling characteristics of contrast. The results showed that the internal flow of helium MHD flow fluctuations, the coupling effect of the wall surface near the wall jet is small or reverse (heat transfer) (4). Tritium transport numerical simulation firstly according to the analysis of tritium concentration distribution header pipe, then the pipeline flow transport to carry out l# analysis of key parameters, including flow velocity, magnetic field, surface conductivity, heat transfer effect and influencing factors of tritium diffusion coefficient on the permeability of the concentration of l# and l# on the wall of the results. Flow velocity distribution, especially the velocity near the wall on the distribution of tritium significant influence in wall permeability, the MHD effect can reduce the wall tritium permeability increases with increasing magnetic field strength, on the wall of the tritium permeability near Similar to the index decline, diffusion coefficient of tritium effect in a certain range of remarkable effect, and the effect of uncertainty of tritium solubility. This work is done in the fusion package MHD flow layer under complex geometry components, study heat transfer and tritium transport, MHD flow and heat transfer of two kinds of boundary coupling analysis program is developed in the the same platform, analysis procedures and double diffusion MHD flow analysis program of tritium lose, initially established a liquid LiPb breeder Blanket Thermal Hydraulic Analysis and tritium transport analysis as research tools, grasp the complicated geometric flow effect on MHD flow and heat transfer characteristics of the sensitive parameters and characteristics of tritium transport process.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TL64
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪太平,趙雪松,劉曉平,吳宜燦;聚變包層新概念的探索與研究[J];成組技術(shù)與生產(chǎn)現(xiàn)代化;2005年02期
2 曾紀(jì)榮;包層金屬板的設(shè)計(jì)[J];機(jī)械工程材料;1981年06期
3 焦一鳴;;托卡馬克混合堆核包層中子學(xué)特性分析[J];核科學(xué)與工程;1993年03期
4 劉松林,汪衛(wèi)華,龍鵬程,吳宜燦;聚變發(fā)電反應(yīng)堆雙冷液態(tài)鋰鉛包層模塊結(jié)構(gòu)設(shè)計(jì)與分析[J];核科學(xué)與工程;2005年01期
5 侯尚林,馬瓊芳,胡春蓮,魏智強(qiáng),肖懷德;各向異性晶體包層對(duì)光纖包層能量的影響[J];蘭州理工大學(xué)學(xué)報(bào);2004年05期
6 胡麗琴,吳宜燦;聚變發(fā)電反應(yīng)堆雙冷液態(tài)鋰鉛包層的初步概率安全分析[J];核科學(xué)與工程;2005年02期
7 張明春;馮開明;栗再新;趙奉超;;聚變-裂變混合堆三種嬗變包層中子學(xué)方案初步分析[J];核聚變與等離子體物理;2012年04期
8 劉成安;劉朝芬;黃文凱;劉忠興;伍鈞;王天龍;;混合堆水冷快裂變包層的中子學(xué)設(shè)計(jì)研究[J];核科學(xué)與工程;1992年04期
9 許增裕;聚變包層工藝和材料研究進(jìn)展[J];中國核科技報(bào)告;1998年S3期
10 ;包層焊接耐腐鋼管[J];軍民兩用技術(shù)與產(chǎn)品;2002年12期
相關(guān)會(huì)議論文 前10條
1 汪太平;劉曉平;吳宜燦;;包層編碼分類計(jì)數(shù)及其命名方法研究[A];全國第16屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集[C];2004年
2 黃群英;李春京;李艷芬;劉少軍;宋勇;彭蕾;章毛連;朱志強(qiáng);高勝;郭智慧;王永亮;吳宜燦;周新貴;萬發(fā)榮;單以銀;郁金南;朱升云;張品源;楊建鋒;李合琴;巨新;室賀健夫;長坂琢也;大貫`忝,
本文編號(hào):1403389
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1403389.html