熱提質(zhì)對(duì)低階煤水分復(fù)吸與自燃特性影響研究
本文關(guān)鍵詞:熱提質(zhì)對(duì)低階煤水分復(fù)吸與自燃特性影響研究 出處:《中國(guó)礦業(yè)大學(xué)(北京)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 熱提質(zhì) 水分復(fù)吸 機(jī)理 吸濕預(yù)氧化 自燃
【摘要】:低階煤儲(chǔ)量大,是我國(guó)重要的儲(chǔ)備能源;其高效提質(zhì)和清潔利用,具有重要的能源戰(zhàn)略意義。但低階煤熱提質(zhì)后極易復(fù)吸水分,導(dǎo)致生產(chǎn)效率降低、運(yùn)輸成本增加;儲(chǔ)存過程遇到雨雪天氣后的高濕環(huán)境,易誘發(fā)自燃,帶來安全隱患。因而,熱提質(zhì)缺乏經(jīng)濟(jì)性和安全性,阻礙了技術(shù)的全面工業(yè)化和低階煤的推廣應(yīng)用。針對(duì)低階煤熱提質(zhì)后的水分復(fù)吸/自燃問題,本文強(qiáng)化基礎(chǔ)規(guī)律研究,系統(tǒng)探究水分復(fù)吸差異、自燃特性差異及產(chǎn)生原因,明確熱提質(zhì)-水分復(fù)吸-自燃特性內(nèi)在聯(lián)系。論文的主要研究?jī)?nèi)容和結(jié)果包括:1.低階煤熱提質(zhì)后的水分復(fù)吸規(guī)律研究選取兩種代表性的低階煤(褐煤和長(zhǎng)焰煤),采用固定床反應(yīng)器在105~900℃范圍內(nèi)進(jìn)行熱提質(zhì),通過恒溫恒濕箱水分復(fù)吸實(shí)驗(yàn),系統(tǒng)地研究了不同溫、濕度貯存環(huán)境(10~40℃、15~98%RH)下提質(zhì)低階煤的水分復(fù)吸規(guī)律。結(jié)果表明,(1)相對(duì)濕度≤40%RH,提質(zhì)溫度越高,復(fù)吸水分含量越低;98%RH時(shí),900℃提質(zhì)樣品的復(fù)吸水分含量明顯提高至12%。環(huán)境溫度高,復(fù)吸平衡所需時(shí)間縮短。不同溫度提質(zhì)褐煤的水分復(fù)吸行為差異比長(zhǎng)焰煤明顯。(2)環(huán)境濕度越大,平衡水分含量(EMC)越高。濕度≥60%RH,提質(zhì)溫度增加,EMC先減小后增大,600℃提質(zhì)褐煤和400℃提質(zhì)長(zhǎng)焰煤的EMC分別最低。濕度80%RH,各溫度提質(zhì)褐煤的水分含量均大于燃煤電廠煤質(zhì)指標(biāo)8%。(3)樣品粒度(3mm以下)和環(huán)境溫度對(duì)EMC的影響較小。復(fù)吸水分含量高的樣品,顆粒尺寸效應(yīng)影響明顯。(4)回轉(zhuǎn)窯提質(zhì)熱碎樣品的EMC比固定床同粒級(jí)樣品低;與固定床不同,熱碎使灰分在小粒度富集,粒度級(jí)減小,EMC越小。2.水分復(fù)吸的等溫吸附/吸附動(dòng)力學(xué)模型分析通過等溫吸附和吸附動(dòng)力學(xué)模型解析水分復(fù)吸過程,發(fā)現(xiàn):(1)105/400℃提質(zhì)樣品廣泛分布了結(jié)合水和自由水,而600/900℃提質(zhì)樣品的吸附勢(shì)低于特征曲線拐點(diǎn)時(shí),自由水分含量劇增。(2)原煤和105/400℃提質(zhì)樣品的吸附等溫線符合Dent模型;600/900℃提質(zhì)樣品的吸附等溫線符合DS2模型。提質(zhì)溫度增加,或煤階增加(褐煤→長(zhǎng)焰煤),第一位吸附量減少;600/900℃提質(zhì)樣品的第一位吸附量極低,復(fù)吸水分主要來自孔內(nèi)填充。第二位吸附量先減小后增加,600℃提質(zhì)褐煤和400℃提質(zhì)長(zhǎng)焰煤的第二位吸附量分別最小。(3)水分復(fù)吸經(jīng)歷快/慢兩個(gè)階段,4h超過EMC的85%,擬二級(jí)動(dòng)力學(xué)模型擬合度均高于0.999。樣品的初始水分含量低,初始吸附速率高,但400℃提質(zhì)樣品最低。EMC高的樣品,親水性吸附位濃度高或者孔結(jié)構(gòu)發(fā)達(dá),易快速形成水膜,吸附速率常數(shù)低。3.低階煤熱提質(zhì)后結(jié)構(gòu)性質(zhì)變化及水分復(fù)吸機(jī)理研究采用多種測(cè)試表征手段(元素分析儀、馬弗爐、掃描電子顯微鏡sem、氮吸附、傅里葉紅外光譜ft-ir分峰擬合)分析煤質(zhì)變化、親水性官能團(tuán)分解、孔隙結(jié)構(gòu)破壞效應(yīng),明確了結(jié)構(gòu)性質(zhì)變化對(duì)水分復(fù)吸的影響,揭示了吸水可逆性差異的化學(xué)本質(zhì)、與提質(zhì)條件的內(nèi)在聯(lián)系,提出了水分復(fù)吸機(jī)理的描述模型。結(jié)果表明,(1)提質(zhì)溫度增加,o含量降低,最高平衡水分含量(mhc*)先減小后增加,223y12.470.60x0.16x1.3710x-(28)--(10)?兩者符合關(guān)系式;o含量9%時(shí),mhc*最小4.5%。vdaf與mhc*的相關(guān)性比ad顯著。(2)提質(zhì)溫度增加,褐煤表面嚴(yán)重褶皺、塌陷;長(zhǎng)焰煤表面呈收縮、裂隙。褐煤的孔體積和比表面積增加,900℃提質(zhì)后孔體積增至134.19×10-3cm3/g;長(zhǎng)焰煤先略微減小后增加,400℃提質(zhì)后孔體積最小23.69×10-3cm3/g。熱提質(zhì)使褐煤20~50nm中孔增多,600/900℃提質(zhì)后微孔急劇增加;提質(zhì)長(zhǎng)焰煤變化不如褐煤顯著,2~10nm孔居多。(3)親水性含氧官能團(tuán)含量順序?yàn)榱u基羧基羰基。羥基含量高,對(duì)mhc*的影響最大。不同溫度提質(zhì)褐煤的親水性官能團(tuán)含量與mhc*的線性相關(guān)性0.82~0.95;提質(zhì)長(zhǎng)焰煤僅0.16~0.53。(4)水分復(fù)吸特性變化的主要機(jī)理:105~600℃提質(zhì)褐煤的親水性含氧官能團(tuán)逐漸減少,吸附位數(shù)量降低,mhc*降低;600~900℃提質(zhì)褐煤微孔增加,高濕環(huán)境下微孔填充自由水分,mhc*增加。但600℃提質(zhì)褐煤表面被疏水性焦油覆蓋,mhc*最小。提質(zhì)長(zhǎng)焰煤的親水性含氧官能團(tuán)比同溫度提質(zhì)褐煤少,mhc*受2~10nm的孔體積改變影響較大。400℃提質(zhì)樣品的孔體積最小,且具有特殊的表面親疏水性相間結(jié)構(gòu),水分子難以穩(wěn)定吸附形成水簇,mhc*最低。4.水分復(fù)吸和吸濕預(yù)氧化對(duì)自燃特性的影響研究將熱提質(zhì)后的新鮮樣、及其水分復(fù)吸樣/吸濕氧化樣分別在程序升溫裝置中進(jìn)行自燃測(cè)定,對(duì)比吸氧量、交叉點(diǎn)溫度(cpt)、升溫速率等參數(shù)差異和fcc判定的自燃傾向性,分析了熱提質(zhì)樣品水分復(fù)吸/吸濕預(yù)氧化后的自燃特性變化。結(jié)果表明,(1)提質(zhì)溫度增加,新鮮樣的自燃傾向性降低。但熱提質(zhì)后的水分復(fù)吸樣臨界溫度吸氧量比新鮮樣降低60%以上;加速氧化階段吸氧量變化出現(xiàn)短暫“平臺(tái)”期后消耗加速。200~500℃提質(zhì)褐煤水分復(fù)吸樣的hr(cpt附近升溫速率)比新鮮樣高;加速氧化階段,瞬時(shí)升溫速率增加更快;自燃傾向性比新鮮樣明顯增加,更易自燃。提質(zhì)長(zhǎng)焰煤的自燃傾向性低于提質(zhì)褐煤,且水分復(fù)吸對(duì)其自燃特性影響小。(2)吸濕預(yù)氧化2天即使200~500oc提質(zhì)褐煤的自燃傾向性(較其提質(zhì)新鮮樣)顯著增加,400℃提質(zhì)樣品吸濕預(yù)氧化30天后自燃傾向性繼續(xù)增加接近原煤。(3)105~300℃提質(zhì)褐煤易復(fù)吸水分,水分復(fù)吸樣對(duì)cpt的影響比吸濕氧化樣顯著,而吸氧量差異不明顯。400/500℃提質(zhì)樣品不易復(fù)吸水分,但復(fù)吸少量水分,cpt顯著增加、吸氧量顯著降低。與吸濕氧化樣相比,水分復(fù)吸樣的水分含量增加值與fcc的增加值呈正比關(guān)系(5y0.23x9.2110-(28)-?)。5.熱提質(zhì)和吸濕預(yù)氧化對(duì)自燃特性的影響機(jī)理研究采用SEM、X射線能譜儀(EDS)、紅外光譜儀、氮吸附儀、微量熱儀等測(cè)定了各樣品的表面化學(xué)結(jié)構(gòu)變化、孔結(jié)構(gòu)及吸濕性差異,利用X-band電子自旋共振波譜儀進(jìn)行自由基動(dòng)態(tài)原位分析,描述了不同樣品的自燃?xì)v程,探究了熱提質(zhì)-親水親氧結(jié)構(gòu)-水分復(fù)吸-吸濕預(yù)氧化-自燃特性的內(nèi)在關(guān)系。結(jié)果表明,(1)熱提質(zhì)和吸濕預(yù)氧化導(dǎo)致結(jié)構(gòu)性質(zhì)變化是褐煤自燃傾向性改變的本質(zhì)原因。105~500oC提質(zhì)褐煤新鮮樣在空氣中發(fā)生預(yù)氧化,表面氧含量及內(nèi)部氧化活性基團(tuán)數(shù)量增加;脂肪側(cè)鏈、含氧官能團(tuán)和(提質(zhì)后生成的)新自由基等氧化活性基團(tuán)的存在,與比表面積的增大,共同強(qiáng)化了樣品的預(yù)氧化和自燃。吸濕產(chǎn)生的潤(rùn)濕熱促進(jìn)熱量聚集的同時(shí),加深預(yù)氧化而間接影響自燃;吸濕程度大的樣品,自燃傾向性增強(qiáng)顯著。(2)熱提質(zhì)和吸濕預(yù)氧化利于自由基的形成。氧化溫度升高,新鮮樣和吸濕氧化樣的自由基濃度相對(duì)增加率均先減小后增加,但吸濕氧化樣的增加率更高。(3)氧化升溫過程中,105℃提質(zhì)新鮮樣的部分活潑分子側(cè)鏈斷裂,持續(xù)產(chǎn)生活性自由基;而400℃提質(zhì)新鮮樣的小分子自由基被迅速消耗,交叉點(diǎn)溫度后不能產(chǎn)生大量新自由基維持氧化反應(yīng),因而自燃傾向性降低。吸濕預(yù)氧化使活性自由基增加;水分使樣品在加速氧化階段后期,繼續(xù)產(chǎn)生自由基,維持氧化自熱升溫,因而吸濕氧化樣的自燃傾向性增加。本研究為低階煤提質(zhì)和分質(zhì)利用的產(chǎn)業(yè)化發(fā)展提供了理論支持。
[Abstract]:Low rank coal reserves, is China's important energy reserves; its high quality and clean use of energy, has important strategic significance. But the low rank coal quality and easy to relapse after hot water, resulting in lower production efficiency, increased transportation costs; storage process encountered rain and snow after high humidity environment, easy to induce spontaneous combustion and bring security risks. Therefore, the heat quality and lack of safety and economy, hindered the popularization and application of comprehensive industrial technology and low rank coal. For the low rank coal hot water quality after relapse / the problem of spontaneous combustion, this paper studies the law basis to strengthen the system, explore moisture re adsorption differences and causes of differences in the characteristics of spontaneous combustion clear, hot - water - quality and relapse of spontaneous combustion characteristics of internal relationship. The main research contents and results include: 1. low rank coal heat after upgrading the moisture re adsorption of low rank coal law study selected two representative (brown coal and long flame coal mining). With a fixed bed reactor for thermally upgrading at 105~900 Deg. C, through constant temperature and humidity box moisture re adsorption experiment, systematically studied the different temperature and humidity storage environment (10~40 C 15~98%RH) under the upgrading of low rank coal moisture re adsorption law. The results show that (1) the relative humidity is less than 40%RH, and temperature the higher the relapse, the lower the moisture content; 98%RH, relapse moisture content was increased to 12%. ambient temperature of 900 DEG C higher quality samples, relapse balance shorter time. Different temperature of lignite moisture relapse behavior differences than the long flame coal obviously. (2) the environmental humidity is bigger, water balance the content of (EMC). The higher humidity is larger than 60%RH, and the increase of temperature, EMC decreased firstly and then increased, 600 DEG and 400 DEG C lignite long flame coal quality and EMC respectively. The lowest humidity 80%RH, the moisture content of each temperature of lignite were higher than coal-fired power plant coal quality index 8%. (3) sample size (3mm) The smaller and the influence of environmental temperature on EMC. The relapse samples with high moisture content, grain size effect is obvious. (4) the quality of rotary kiln thermal broken sample EMC than fixed bed with low grade samples; unlike fixed bed, the broken ash in the small heat accumulation, decreasing particle size, adsorption / the smaller the EMC.2. moisture re adsorption kinetic model through the analysis of the adsorption isotherm and kinetics model analysis of moisture re adsorption process, found that: (1) 105/400 samples are widely distributed in the C and bound water and free water, and the adsorption of 600/900 and the potential is lower than C sample characteristic curve inflection point, increasing the free moisture content (. 2) the adsorption isotherms of coal and 105/400 C quality and samples with the Dent model; adsorption isotherm of 600/900 C quality samples in accordance with the DS2 model. The quality and temperature increase, or increase the order of coal (lignite, long flame coal), the first adsorption amount decreased; 600/900 C quality The first adsorption capacity of samples is very low, relapse water mainly from hole filling. Second the adsorption capacity decreases first and then increases, the second adsorption capacity of 600 DEG and 400 DEG C and lignite long flame coal were minimal. (3) water fast / slow relapse experience two stages, 4H more than EMC 85%, the initial moisture content of two order kinetics model fitting degree is higher than that of 0.999. samples is low, the initial adsorption rate is high, but at 400.EMC high quality and lowest sample sample, hydrophilic adsorption sites of high concentration or developed pore structure, easy to form a water film, the adsorption rate constant low.3. low rank coal thermal structure after upgrading the nature of change and relapse mechanism of water using a variety of characterization means (element analyzer, muffle furnace, scanning electron microscopy SEM, nitrogen adsorption, Fourier transform infrared spectroscopy FT-IR peak fitting) analysis of coal quality variation, decomposition of hydrophilic functional groups, the destructive effect of pore structure, The influence of structure changes on the properties of moisture re adsorption, reveals the chemical nature of water absorption reversibility differences, internal relation and quality conditions, put forward the description model of moisture re adsorption mechanism. The results show that (1) the quality and temperature increased, O content decreased, the highest equilibrium moisture content (mhc*) decreased first and then increased, 223y12.470.60x0.16x1.3710x- (28) - (10)? The coincidence relation; the content of O 9%, mhc* 4.5%.vdaf and mhc* significant correlation between the minimum ratio ad. (2) and the increase of temperature, coal surface collapse; serious fold, long flame coal surface is contraction cracks. The pore volume of lignite and specific surface area increased. 900 C after upgrading the pore volume increased to 134.19 * 10-3cm3/g; long flame coal first slightly increased after 400 DEG C, after upgrading the pore volume of 23.69 * 10-3cm3/g. and the minimum heat 20~50nm mesoporous microporous lignite increased, increased sharply at 600/900 DEG C after upgrading; upgrading the long flame coal does not change Such as lignite significantly, the holes in the 2~10nm. (3) hydrophilic oxygen-containing functional groups in order. High content of hydroxyl carbonyl hydroxyl and carboxyl group, the greatest impact on mhc*. The linear correlation between 0.82~0.95 different temperature lignite hydrophilic group content and mhc*; and long flame coal only 0.16~ 0.53. (4) the main mechanism of water complex suction characteristic changes: 105~600 C lignite hydrophilic oxygen-containing functional groups gradually reduced, reducing the adsorption quantity of mhc* decreased; 600~900 C microporous lignite increased under high humidity environment, micropore filling free water, mhc* increased. But the 600 C lignite surface is hydrophobic tar coverage, mhc* minimum. The quality of long flame coal the hydrophilic oxygen-containing functional groups than the same temperature of lignite, the pore volume change of mhc* 2~10nm has a significant influence on the quality and sample.400 C minimum pore volume, and surface hydrophobicity and special structure, water molecules are difficult to The formation of stable adsorption water clusters, like fresh research and hygroscopic pre oxidation of mhc*.4. lowest moisture re adsorption effect on the spontaneous combustion characteristic of heat after upgrading, and its moisture re adsorption / absorption oxidation samples were measured in a temperature programmed combustion device, comparison of oxygen uptake, cross point temperature (CPT) temperature, spontaneous combustion tendency the parameters such as rate difference and FCC determination, analysis of the spontaneous combustion characteristic changes of heat moisture re adsorption / absorption and sample pre oxidation. The results showed that (1) and the increase of temperature, the spontaneous combustion tendency of fresh sample decreased. But the heat after upgrading the moisture re adsorption like critical temperature of oxygen consumption is more than 60% lower than the fresh sample the accelerated oxidation stage; oxygen consumption changes a short period after the "platform" consumption accelerated.200~500 C lignite moisture re adsorption kind of HR (near CPT heating rate) than the fresh sample; accelerated oxidation stage, the instantaneous heating up rate increases faster; spontaneous combustion Orientation was significantly higher than that of fresh samples, more prone to spontaneous combustion. And long flame coal spontaneous combustion tendency is lower than that of lignite, and the moisture re adsorption has little influence on the spontaneous combustion characteristics. (2) moisture pre oxidation even after 2 days of spontaneous combustion tendency of 200~500oc lignite (the quality than the fresh sample) was significantly increased at 400 and after 30 days of pre oxidation sample moisture to coal spontaneous combustion tendency continues to increase. (3) 105~300 C lignite easy relapse than water, moisture absorption oxidation effect of CPT kind of like water relapse, and oxygen consumption were not significantly different at.400/500 quality and the sample is not easy to relapse moisture, but relapse of a small amount of water, CPT increased oxygen consumption decreased significantly. Compared with moisture oxidation, moisture content moisture re adsorption kind of added value is proportional to the increasing value of FCC (5y0.23x9.2110- (28) -?).5. heat and moisture and oxidation on the influence mechanism of the spontaneous combustion characteristics by SEM, X Ray spectrometer (EDS), infrared spectroscopy, nitrogen adsorption instrument, surface chemical structure of each sample were measured microcalorimeter, pore structure and moisture absorption difference, analysis of free radicals in situ by X-band electron spin resonance, spontaneous combustion process of different samples are described, to explore the internal relationship between the heat the quality and structure of water - hydrophilic oxygen - relapse hygroscopic pre oxidation and spontaneous combustion characteristics. The results show that (1) thermal upgrading and moisture pre oxidation leads to structural changes in the nature of coal spontaneous combustion tendency of change is the essential reason of.105~500oC lignite fresh sample pre oxidation in air, the number of surface oxygen content and internal oxidation activity group increased; aliphatic side chains, oxygen containing functional group and (after upgrading generation) new free radical oxidation of active groups, with the increase of the surface area, to enhance the sample pretreatment and the moisture absorption of spontaneous combustion. Wetting heat and promote heat gathering at the same time, enhance the pre oxidation indirectly affect spontaneous combustion; degree of hygroscopicity large sample, spontaneous combustion tendency increased significantly. (2) the formation of heat and moisture and pre oxidation to free radicals. The oxidation temperature, moisture absorption and oxidation of fresh sample kind of free radical concentration relative increase rate decreases after the increase, but the increase rate of oxidation absorption higher. (3) oxidation during the heating process, some active molecule side chain cleavage 105 DEG C and fresh samples, continue to produce reactive free radicals and free radicals; 400 C quality of fresh sample was quickly consumed, the junction temperature can produce a large number of new to maintain the free radical oxidation reaction, thus reducing moisture. The spontaneous combustion tendency of pre oxidation activity of free radicals increased; water samples in accelerated oxidation stage to produce free radicals, maintain the oxidation temperature, and moisture like in spontaneous combustion oxidation This study provides a theoretical support for the industrialization of low order coal extraction and utilization.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ530
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孟慶函,李善祥,李保慶;低階煤氧化降解的研究及開發(fā)前景[J];腐植酸;1998年02期
2 張宗飛;;試論低階煤的綜合利用途徑及其技術(shù)經(jīng)濟(jì)分析[J];化肥設(shè)計(jì);2014年01期
3 孟慶函,李善祥,李保慶;低階煤兩段化學(xué)降解產(chǎn)物的組成性質(zhì)[J];燃料化學(xué)學(xué)報(bào);2000年04期
4 陶秀祥,尹蘇東,周長(zhǎng)春;低階煤的微生物轉(zhuǎn)化研究進(jìn)展[J];煤炭科學(xué)技術(shù);2005年09期
5 游偉;趙濤;章衛(wèi)星;何正兆;皮金林;畢東煌;;美國(guó)低階煤提質(zhì)技術(shù)發(fā)展概述[J];化肥設(shè)計(jì);2009年04期
6 虞育杰;劉建忠;王傳成;胡亞軒;周俊虎;岑可法;;低階煤脫水提質(zhì)技術(shù)發(fā)展現(xiàn)狀[J];熱力發(fā)電;2011年09期
7 安茂燕;蔣榮立;;低階煤浮選研究現(xiàn)狀及分析[J];能源技術(shù)與管理;2012年01期
8 蘇天雄;;淺談我國(guó)低階煤資源分布及其利用途徑[J];廣東化工;2012年06期
9 朱洋洋;卜良輝;孫寧陵;趙云鵬;;低階煤溶劑萃取研究進(jìn)展[J];廣州化工;2013年18期
10 李振珠;李風(fēng)海;薛兆民;房倚天;;低階煤氣化結(jié)渣特性的研究進(jìn)展[J];菏澤學(xué)院學(xué)報(bào);2013年05期
相關(guān)會(huì)議論文 前4條
1 曲思建;王琳;張樝;劉敏;劉立麟;;我國(guó)低階煤轉(zhuǎn)化主要技術(shù)進(jìn)展及工程實(shí)踐[A];中國(guó)煤炭學(xué)會(huì)成立五十周年高層學(xué)術(shù)論壇論文集[C];2012年
2 高同國(guó);姜峰;楊金水;袁紅莉;;低階煤降解微生物菌群的分離及其降解效果研究[A];2010中國(guó)腐植酸行業(yè)低碳經(jīng)濟(jì)交流大會(huì)暨第九屆全國(guó)綠色環(huán)保肥料(農(nóng)藥)新技術(shù)、新產(chǎn)品交流會(huì)論文集[C];2010年
3 管嵩;宋成;王侖;丁仕兵;;環(huán)境溫濕度對(duì)進(jìn)口低階煤內(nèi)水影響的研究[A];山東出入境檢驗(yàn)檢疫局?痆C];2012年
4 彭少濤;劉川慶;朱衛(wèi)平;孫斌;劉學(xué)鵬;;保德區(qū)塊中低階煤壓裂存在的問題及技術(shù)對(duì)策[A];2011年煤層氣學(xué)術(shù)研討會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 通訊員白云峰、謝振江、謝光順;奇臺(tái)縣與重慶興祥港埠有限公司簽訂低階煤循環(huán)利用項(xiàng)目合同[N];昌吉日?qǐng)?bào)(漢);2011年
2 李北陵;低階煤盼變“白天鵝”[N];中國(guó)工業(yè)報(bào);2011年
3 記者 張婷;我區(qū)首個(gè)低階煤開發(fā)項(xiàng)目開工[N];新疆日?qǐng)?bào)(漢);2012年
4 記者高珍吉;低階煤循環(huán)利用項(xiàng)目在奇臺(tái)開工[N];昌吉日?qǐng)?bào)(漢);2012年
5 韓紅梅 石油和化學(xué)工業(yè)規(guī)劃院無機(jī)化工處副處長(zhǎng);低階煤熱解提質(zhì)需全力攻關(guān)[N];中國(guó)化工報(bào);2013年
6 本報(bào)記者 閆志強(qiáng);低階煤分質(zhì)轉(zhuǎn)化需統(tǒng)籌規(guī)劃[N];中國(guó)能源報(bào);2013年
7 本報(bào)記者 閆志強(qiáng);低階煤分質(zhì)轉(zhuǎn)化標(biāo)準(zhǔn)要高[N];中國(guó)能源報(bào);2013年
8 商報(bào)記者 高立萍;海外煤炭技術(shù)企業(yè)謀局中國(guó)市場(chǎng)[N];北京商報(bào);2011年
9 高立萍;海外煤炭技術(shù)企業(yè)謀局中國(guó)市場(chǎng)[N];中國(guó)石化報(bào);2011年
10 田華;低階煤制備水煤漿技術(shù)獲突破[N];中國(guó)國(guó)土資源報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 李子文;低階煤的微觀結(jié)構(gòu)特征及其對(duì)瓦斯吸附解吸的控制機(jī)理研究[D];中國(guó)礦業(yè)大學(xué);2015年
2 屈進(jìn)州;低階煤活性油泡浮選行為與浮選工藝研究[D];中國(guó)礦業(yè)大學(xué);2015年
3 鄧春苗;低階煤煤層氣儲(chǔ)集機(jī)理及原始含氣量模擬研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
4 王影;低階煤固定床和移動(dòng)床脫水和低溫?zé)峤膺^程中傳熱特性[D];太原理工大學(xué);2016年
5 孫南翔;低階煤熱敏特性及其熱力破碎機(jī)理研究[D];中國(guó)礦業(yè)大學(xué)(北京);2016年
6 劉麗華;熱提質(zhì)對(duì)低階煤水分復(fù)吸與自燃特性影響研究[D];中國(guó)礦業(yè)大學(xué)(北京);2017年
7 趙衛(wèi)東;低階煤水熱改性制漿的微觀機(jī)理及燃燒特性研究[D];浙江大學(xué);2009年
8 田忠坤;管式氣流干燥器提質(zhì)低階煤理論與技術(shù)的研究[D];中國(guó)礦業(yè)大學(xué)(北京);2009年
9 王娜;提質(zhì)低階煤熱解特性及機(jī)理研究[D];中國(guó)礦業(yè)大學(xué)(北京);2010年
10 陳博;中低階煤的分級(jí)變溫?zé)崛躘D];中國(guó)礦業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 王永;氣體熱載體低階煤熱解特性研究及連續(xù)熱解系統(tǒng)研制[D];太原理工大學(xué);2013年
2 孫香榮;新疆阜康礦區(qū)低階煤孔隙結(jié)構(gòu)與瓦斯解吸特性實(shí)驗(yàn)研究[D];西安科技大學(xué);2015年
3 趙博駿;水熱提質(zhì)對(duì)低階煤物理化學(xué)性質(zhì)影響的實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
4 胡志博;低階煤極性基團(tuán)的微波調(diào)控實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
5 馬利俊;冷凍處理低階煤制水煤漿技術(shù)研究[D];寧夏大學(xué);2016年
6 柳金秋;堿金屬與堿土金屬對(duì)低階煤與生物質(zhì)共熱解的作用機(jī)制研究[D];中國(guó)礦業(yè)大學(xué);2016年
7 鄭云婷;低階煤表面性質(zhì)研究與浮選藥劑的篩選[D];煤炭科學(xué)研究總院;2016年
8 王超;低階煤低溫?zé)峤馓豳|(zhì)特性實(shí)驗(yàn)研究[D];華北理工大學(xué);2016年
9 王慧;低階煤干燥提質(zhì)防治煤塵災(zāi)害技術(shù)研究與應(yīng)用[D];華北理工大學(xué);2016年
10 張帥;預(yù)處理在低階煤制備無灰煤中的應(yīng)用[D];華北理工大學(xué);2016年
,本文編號(hào):1380819
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1380819.html