微弧區(qū)間伏安特性對(duì)Ti及TiN鍍層結(jié)構(gòu)與性能的影響
本文關(guān)鍵詞:微弧區(qū)間伏安特性對(duì)Ti及TiN鍍層結(jié)構(gòu)與性能的影響 出處:《西安理工大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 微弧放電 磁控濺射 陰極電弧離子鍍 伏安特性曲線 離化率
【摘要】:針對(duì)磁控濺射鍍料粒子離化率低和陰極電弧離子鍍存在高溫熔滴噴濺等技術(shù)不足,依據(jù)陰極磁場(chǎng)可約束氬離子對(duì)靶面的轟擊區(qū)域,和在接收到相同強(qiáng)度氬離子轟擊時(shí)靶面晶界等微缺陷處的電子逸出速率較晶內(nèi)大約30%,并且電子逸出速率的沿面不均衡度又會(huì)被焦耳熱效應(yīng)(Q=I~2Rt)加劇這一等離子體物理學(xué)原理,本文通過(guò)對(duì)磁控陰極與真空腔壁之間電流步進(jìn)增量和不同模式脈沖電場(chǎng)特性的調(diào)控,誘發(fā)出以靶電流作為靶面電子逸出總量表征的、靶面微缺陷處電子逸出速率可循環(huán)自增的靶面微弧放電狀態(tài),由此引發(fā)陰極靶面鍍料粒子以碰撞誘導(dǎo)熱發(fā)射方式脫靶。據(jù)此研究了具有不同伏安特性的氣體放電輝光區(qū)、微弧區(qū)和弧光區(qū)對(duì)鍍料粒子脫靶方式的影響規(guī)律;分析了脫靶方式對(duì)離子鍍鍍層微觀結(jié)構(gòu)和力學(xué)與摩擦學(xué)性能的影響機(jī)理,得到如下研究結(jié)果:對(duì)陰極Ti靶與陽(yáng)極真空腔體間氣體放電伏安特性曲線的測(cè)定發(fā)現(xiàn),在直流步進(jìn)增量式電場(chǎng)模式下,滿足磁控陰極靶面誘發(fā)微弧放電的最小靶電流密度為0.175 A/cm~2(即輝光放電區(qū)和微弧放電區(qū)的臨界轉(zhuǎn)變靶電流密度為0.175 A/cm~2)。通過(guò)對(duì)誘發(fā)微弧放電后靶面刻痕的觀察,陰極靶面呈現(xiàn)離散分布的溝壑狀,有別于鍍料粒子以級(jí)聯(lián)碰撞脫靶后的不規(guī)則凹坑形貌和場(chǎng)致熱發(fā)射脫靶后的細(xì)小圓形融坑形貌。揭示出誘發(fā)靶面微弧放電狀態(tài)可使靶面缺陷區(qū)域的鍍料粒子由級(jí)聯(lián)碰撞脫靶演變?yōu)榕鲎舱T導(dǎo)熱發(fā)射脫靶。在微弧放電區(qū)間靶電流密度為0.267 A/cm~2時(shí)制備的純Ti鍍層,沿靶基距方向的厚度遞減速率僅為72.1%,且表現(xiàn)出平整致密的柱狀結(jié)構(gòu)(粗糙度Ra為12 nm),而表面并未出現(xiàn)微米尺寸的大顆粒。膜基結(jié)合強(qiáng)度的測(cè)定結(jié)果表明,該鍍層的膜基結(jié)合力為34.0 N。同時(shí)發(fā)現(xiàn),直流步進(jìn)增量式電場(chǎng)模式雖可誘發(fā)出靶面微弧放電狀態(tài),但稍長(zhǎng)的微弧放電持續(xù)時(shí)間,則會(huì)因微區(qū)溫升達(dá)到甚至超過(guò)靶材熔點(diǎn)而產(chǎn)生微區(qū)熔融,影響了鍍層制備工藝的實(shí)施。通過(guò)獨(dú)立調(diào)制脈沖條件下靶面峰值電流導(dǎo)通寬度T_(on)和關(guān)斷寬度Toff,實(shí)現(xiàn)既可使靶面始終處于微弧放電狀態(tài),又可避免因過(guò)度的熱積累而致靶面產(chǎn)生微區(qū)熔融。同時(shí)發(fā)現(xiàn),在T_(on)=24.5μs和T_(off)=0.5μs的脈沖電場(chǎng)模式下,輝光放電區(qū)與微弧放電區(qū)的臨界轉(zhuǎn)變靶電流密度為0.225 A/cm~2。由于誘發(fā)與維持微弧放電狀態(tài)需靶面溫升作為前提條件,而脈沖電場(chǎng)較直流電場(chǎng)減緩了靶面的溫升效果,確定了脈沖電場(chǎng)模式相較直流電場(chǎng)模式需要更大的靶電流密度才能誘發(fā)陰極靶面微弧放電狀態(tài)。此時(shí),在微弧放電區(qū)內(nèi),當(dāng)靶電流密度由0.310增大至0.357 A/cm~2時(shí)所制備的純Ti鍍層,沿靶基距方向的厚度遞減速率由84降低至80%,而鍍層的膜基結(jié)合力由15.3增大至25.2 N。揭示出在該脈沖電場(chǎng)微弧放電區(qū)間較大靶電流密度條件下,可明顯降低鍍層沿靶基距方向的厚度遞減速率和提升鍍層的膜基結(jié)合力。利用脈沖電場(chǎng)等通量原理,通過(guò)對(duì)T_(on)和T_(off)的合理調(diào)配,可在相同平均功率下獲得較直流電場(chǎng)模式數(shù)倍增長(zhǎng)的峰值靶電流密度,以此利于實(shí)現(xiàn)陰極靶面微弧放電狀態(tài)的誘發(fā)與維持。并且,還構(gòu)建出一個(gè)T_(on)周期內(nèi)先小后大遞進(jìn)式的雙脈沖電場(chǎng)模式,既滿足了鍍料粒子快速脫靶以獲得細(xì)小晶粒鍍層的高峰值電流的工藝要求,又達(dá)到了增加脈沖導(dǎo)通寬度以提高鍍層平均沉積速率的效能目標(biāo)。對(duì)采用不同電場(chǎng)模式在微弧放電區(qū)相同靶功率下制備純Ti鍍層的研究結(jié)果表明:雙脈沖電場(chǎng)模式制備純Ti鍍層的平均沉積速率為80nm/min,實(shí)際沉積速率為132 nm/min,且鍍層具有致密的組織結(jié)構(gòu)和12.0 N的膜基結(jié)合力。另一方面,對(duì)采用雙脈沖電場(chǎng)模式在微弧放電區(qū)內(nèi)不同峰值靶電流密度下制備純Ti鍍層的研究結(jié)果表明:當(dāng)峰值靶電流密度由0.27增大至1.35 A/cm~2時(shí),鍍層的平均晶粒尺寸由18降低至10 nm,而鍍層硬度由1.2增大至5.6 GPa。說(shuō)明了在微弧放電區(qū)內(nèi)峰值靶電流密度的增大可以降低鍍層的平均晶粒尺寸,能夠達(dá)到細(xì)晶強(qiáng)化的目的。同時(shí)發(fā)現(xiàn),采用雙脈沖電場(chǎng)模式,在微弧放電區(qū)內(nèi)峰值靶電流密度為0.87 A/cm~2時(shí)制備的TiN鍍層具有12 nm的平均晶粒尺寸、29.6 GPa的顯微硬度、377.1 GPa的彈性模量和5.5×10~(-5) mm/a的腐蝕速率,可為TiN鍍層的工藝開(kāi)發(fā)提供一定的參考價(jià)值。
[Abstract]:The magnetron sputtering coating material particle ionization rate and low cathodic arc ion plating insufficient high temperature of droplet spray technology, based on the cathode magnetic field can constrain the argon ion bombardment of the target surface area, and to the same intensity of argon ion bombardment in the receiving electronic escape target surface micro defects such as grain boundary at a rate of about 30% in a crystal and, the surface electron escape rate imbalance will be the Joule heating effect (Q=I~2Rt) increased the plasma physics principle, this paper through the increment and electric field characteristics of different pulse mode on the regulation between the magnetron cathode and the vacuum chamber wall current step to induce target current as the target surface electron escape total representation. The target surface micro defect electron escape rate can be recycled from the target surface by micro arc discharge, which caused the cathode surface coating material particles induced by thermal emission mode to miss collision. This paper has the same V The gas discharge glow characteristic, micro arc zone and arc of influence of coating material particle Miss mode; analysis of effect mechanism of distance way coating microstructure and mechanical and Tribological Properties of ion plating, the results obtained are as follows: Determination of Ti cathode and anode target chamber gas discharge I-V curve was found in the field, DC step incremental mode, meet the minimum target current density cathode magnetron target surface induced by micro arc discharge is 0.175 A/cm~2 (critical change target current density glow discharge and micro arc discharge zone is 0.175 A/cm~2). Through the observation of the target surface notch induced by micro arc discharge, the cathode surface showed a discrete distribution the gully, a small circular in coating material particles with dimple morphology and irregular field collision cascade distance after the heat emission after thawing. Miss hole shape reveals the target surface induced by micro The arc discharge state can make the material of plating particles target surface defect area by collision cascade evolved into collision induced thermoemission miss miss. Preparation of pure Ti coating prepared by micro arc discharge in the range of target current density is 0.267 A/cm~2, along the direction of thickness of the substrate to target distance decreasing rate is only 72.1%, and showed a dense columnar structure (the roughness Ra of 12 nm), and the surface does not appear large particles of micron size. The adhesion strength was measured and results show that the coating adhesion force is 34 N. at the same time, DC stepping electric field can induce incremental model of the target surface micro arc discharge state, but the micro arc discharge slightly longer the duration will be due to micro temperature rise reach or even exceed the melting point of target produced micro melting, affecting the implementation of coating preparation technology. Through independent pulse peak under the condition of target current conduction width T_ (on) and off the width of Toff,. We can make the target always in the micro arc discharge state, and avoid excessive heat accumulation caused by target surface micro melting. At the same time, in T_ (on =24.5 s) and T_ (off) =0.5 s pulsed electric field model, the critical electric glow discharge and arc discharge area of target area the current density of 0.225 A/cm~2. due to induce and maintain the state micro arc discharge target surface temperature rise as a precondition, and a DC electric field pulse electric field slows the target surface temperature rise effect of pulsed electric field mode compared with DC electric field model needs to target current density larger induced cathode target surface micro arc discharge state is determined. At this time, in discharge area, when the target current density increases from 0.310 to 0.357 A/cm~2 for pure Ti coating prepared along the direction of the target substrate distance, the thickness decreasing rate decreased from 84 to 80%, and the film substrate coating force increases from 15.3 to 25.2 N. revealed in the Electric pulse micro arc discharge interval of large target current density conditions, can significantly reduce the adhesion of coating thickness along the direction of the target substrate distance decreasing rate and enhance coating force. Using pulsed electric field flux principle based on T_ (on) and T_ (off) distribution, the peak current density than the growth target DC electric field in the same mode several times more than the average power, in order to achieve the target surface induced by cathodic microarc discharge status and maintenance. And also to construct a T_ (on) double pulsed electric field model of progressive period to small, not only to meet the fast particle coating material to obtain fine grain layer distance the peak value of the current technology, and to increase the pulse width to improve the efficiency of the coating deposition rate. The average target of using different electric field model study the preparation of pure Ti coating in microarc discharge area of target power under the same The results showed that the average sedimentation rate of double pulse electric field model for preparation of pure Ti coating is 80nm/min, the actual deposition rate was 132 nm/min, the film substrate and the coating has a dense structure and 12 N force. On the other hand, the double pulse electric field in discharge mode in different target peak current density system study on the preparation of pure Ti coating. The results showed that when the peak target current density increases from 0.27 to 1.35 A/cm~2, the average grain size of the coating decreased from 18 to 10 nm, and the hardness increases from 1.2 to 5.6 GPa. shows increasing in micro arc discharge area peak target current density can reduce the average grain size of the coating. To achieve the purpose of fine grain strengthening. At the same time, the double pulse electric field model, the average grain size in the micro arc discharge zone target peak current density of 0.87 A/cm~2 TiN coatings prepared with 12 nm, 29.6 GPa. The microhardness, the modulus of elasticity of 377.1 GPa and the corrosion rate of 5.5 x 10~ (-5) mm/a can provide a certain reference value for the development of TiN coating.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊洪順;李世直;;等離子體化學(xué)氣相沉積高度定向TiN膜[J];青島化工學(xué)院學(xué)報(bào);1986年04期
2 李世直;黃午;楊洪順;王忠恕;;等離子體化學(xué)氣相沉積TiN[J];山東化工學(xué)院學(xué)報(bào);1983年01期
3 李世直;徐翔;;等離子體化學(xué)氣相沉積TiN膜的研究[J];金屬學(xué)報(bào);1988年03期
4 張鴻儉,馮鐘潮,張鶴;TiN類薄膜的激光化學(xué)氣相沉積[J];兵器材料科學(xué)與工程;1999年01期
5 楊洪順;石玉龍;黃午;李世直;;直流等離子體化學(xué)氣相沉積TiN在塞規(guī)上的應(yīng)用[J];青島化工學(xué)院學(xué)報(bào);1987年01期
6 金友林;楊麗珠;;高碳抗疲勞應(yīng)力鋼TiN夾雜物形成機(jī)理及控制研究[J];安徽冶金;2012年04期
7 王為民,徐慢,梅炳初;自蔓延高溫合成法制備TiN陶瓷粉末[J];武漢工業(yè)大學(xué)學(xué)報(bào);1995年03期
8 古宏晨,,胡黎明;微波等離子體化學(xué)氣相沉積合成TiN超細(xì)顆粒[J];華東理工大學(xué)學(xué)報(bào);1994年02期
9 廖鐘亮;等離子鍍TiN膜前處理工藝[J];表面技術(shù);1994年06期
10 葛允宗;王建軍;顏慧成;仇圣桃;;含Ti齒輪鋼中TiN夾雜析出熱力學(xué)及其控制[J];鋼鐵釩鈦;2012年05期
相關(guān)會(huì)議論文 前10條
1 金友林;楊麗珠;;高碳抗疲勞應(yīng)力鋼TiN夾雜物形成機(jī)理及控制研究[A];2011年華東五省煉鋼學(xué)術(shù)交流會(huì)論文集[C];2011年
2 馬占吉;肖更竭;武生虎;任妮;;Ti/TiN多層厚膜力學(xué)性能研究[A];中國(guó)真空學(xué)會(huì)2006年學(xué)術(shù)會(huì)議論文摘要集[C];2006年
3 周yN;馬勝歌;張德元;張以忱;耿漫;吳宇峰;;中頻非平衡磁控濺射制備TiN膜[A];2005'全國(guó)真空冶金與表面工程學(xué)術(shù)會(huì)議論文集[C];2005年
4 王謙;魯永劍;何生平;;含TiO_2的保護(hù)渣在高溫下生成TiN、Ti(CN)的研究[A];2011年第九屆全國(guó)連鑄學(xué)術(shù)會(huì)議論文集[C];2011年
5 吳宇峰;馬勝歌;張德元;張以忱;耿漫;周;;工藝參數(shù)對(duì)中頻非平衡磁控濺射制備TiN膜性能的影響[A];2005'全國(guó)真空冶金與表面工程學(xué)術(shù)會(huì)議論文集[C];2005年
6 夏法鋒;吳蒙華;賈振元;李智;;超聲波對(duì)納米Ni-TiN復(fù)合鍍層的影響[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)之第12屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2007年
7 夏法鋒;吳蒙華;賈振元;李智;;超聲波對(duì)納米Ni-TiN復(fù)合鍍層的影響[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年
8 李海淼;郭興忠;馬奇;楊輝;;納米SiC、TiN在水介質(zhì)中的分散穩(wěn)定性研究[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國(guó)硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
9 沈麗如;崔西容;馮春堂;熊濤;徐桂東;;微弧等離子體氧化過(guò)程的聲譜和光譜分析[A];2006全國(guó)荷電粒子源、粒子束學(xué)術(shù)會(huì)議論文集[C];2006年
10 田新中;薛正學(xué);鐘保軍;;軸承鋼中TiN夾雜物的控制研究[A];中國(guó)金屬學(xué)會(huì)特鋼分會(huì),特鋼冶煉學(xué)術(shù)委員會(huì)2009年會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 楊超;微弧區(qū)間伏安特性對(duì)Ti及TiN鍍層結(jié)構(gòu)與性能的影響[D];西安理工大學(xué);2017年
2 楊亮;電渣重熔GCr15SiMn軸承鋼TiN夾雜物形成機(jī)理及控制工藝[D];北京科技大學(xué);2017年
3 劉廣義;微弧氧化鎂表面鈣化涂層組織結(jié)構(gòu)與生物降解行為[D];哈爾濱工業(yè)大學(xué);2013年
4 唐元廣;TC4鈦合金微弧氧化膜的制備表征及陰極微弧放電機(jī)制研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李雪萍;硬質(zhì)合金上先進(jìn)PVD技術(shù)沉積TiN基硬質(zhì)膜及其性能研究[D];華南理工大學(xué);2016年
2 周俊龍;納米TiN和WS_2作為潤(rùn)滑油添加劑的摩擦學(xué)性能研究[D];西南交通大學(xué);2017年
3 王晶;Ti和TiN基底上陽(yáng)極氧化膜的制備、摻雜及電化學(xué)性能研究[D];南京理工大學(xué);2017年
4 張宏亮;納米TiN改性Ti(C,N)基金屬陶瓷組織、性能及抗熱震性能的研究[D];合肥工業(yè)大學(xué);2013年
5 王佳佳;貧鈾表面氧化鋁陶瓷涂層的陰極微弧電沉積法制備及其性能研究[D];中國(guó)工程物理研究院;2015年
6 周汝W
本文編號(hào):1374070
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1374070.html