鋰電子電池過充電和過放電條件下熱失控(失效)特性及機(jī)制研究
本文關(guān)鍵詞:鋰電子電池過充電和過放電條件下熱失控(失效)特性及機(jī)制研究 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鋰離子電池安全 過充電 熱失控 絕熱條件 電阻 間歇過充 電化學(xué)阻抗譜 過放電
【摘要】:大電流充放電、電池管理系統(tǒng)故障、內(nèi)阻的不一致性等容易引起鋰離子電池發(fā)生過充電或過放電,輕則導(dǎo)致電池容量下降或電池故障,嚴(yán)重的將引發(fā)熱失控。在實(shí)際應(yīng)用中,單電池常常處于通風(fēng)受限的環(huán)境,因此,開展鋰離子電池在極端通風(fēng)條件下的過充電和過放電研究不僅可以明確電池過充電、過放電過程中的熱行為表現(xiàn),還可以深化對(duì)鋰離子電池發(fā)生過充電和過放電熱失控(失效)根源的認(rèn)識(shí),掌握誘發(fā)熱失控(失效)的主要原因。通過定量確定過充電熱失控的臨界條件,并建立半失效狀態(tài)的預(yù)測(cè)方法,為實(shí)現(xiàn)鋰離子電池的產(chǎn)業(yè)化應(yīng)用提供理論依據(jù)和技術(shù)支撐。關(guān)于電池過充電熱失控機(jī)制,本文從三個(gè)方面開展研究。首先從充電電壓和電流角度,采用電池循環(huán)儀與加速度量熱儀(ARC)聯(lián)用的方法,研究了通風(fēng)條件、過充電方式和電流倍率對(duì)商用LiCoO2+Li(Ni0.5Co0.2Mn0.3)O2/石墨+SiOx電池過充電熱失控行為的影響。分析表明,通過恒流-恒壓充滿電后恒流過充的危險(xiǎn)性大于直接恒流過充。副反應(yīng)熱在0.1C、0.2C、0.5C、1C和2C過充實(shí)驗(yàn)中為熱失控分別貢獻(xiàn)了 82%、84%、80%、60%和40%的能量。在接近熱失控時(shí),電池電壓會(huì)出現(xiàn)一個(gè)拐點(diǎn)。為了防止電池?zé)崾Э氐陌l(fā)生,在電池達(dá)到拐點(diǎn)電壓時(shí),應(yīng)在2分鐘內(nèi)采取有效的措施來冷卻電池。該拐點(diǎn)電壓隨著電流倍率的增加而線性增加。從電池化學(xué)反應(yīng)的產(chǎn)物來探索過充熱失控的化學(xué)機(jī)理。通過掃描電子顯微鏡(SEM)和能譜儀(EDS)分析得到 LiCoO2+Li(Ni0.5Co0.2Mn0.3)O2/石墨+SiOx電池正極材料的分解產(chǎn)物可溶于SiOx。從負(fù)極上的某些殘余區(qū)域的層狀石墨結(jié)構(gòu)可以推測(cè),負(fù)極鋰沉積是由于正負(fù)電極間距發(fā)生變化,并不是因?yàn)樨?fù)極容量的飽和。自制Li(Ni0.5Co0.2Mn0.3)O2/石墨紐扣電池X射線衍射(XRD)測(cè)試表明過充后正極材料晶格參數(shù)降低并且伴有Ni02產(chǎn)生。在化學(xué)反應(yīng)的基礎(chǔ)上揭示了電池過充電過程中內(nèi)阻演化與熱失控的關(guān)系,得到了適用于任何小型電池的半失效狀態(tài)預(yù)測(cè)方法。在絕熱條件下采用伏安特性法和間歇過充法均得到軟包電池電阻隨著荷電狀態(tài)(SOC)的增加先下降后上升的規(guī)律,拐點(diǎn)為150%SOC。進(jìn)一步采用交流阻抗法加以驗(yàn)證和解釋,發(fā)現(xiàn)該拐點(diǎn)的出現(xiàn)是由于固體電解質(zhì)界面膜(SEI膜)增厚,表現(xiàn)在阻抗譜中的高頻和中低頻的半圓分離,電池進(jìn)入半失效狀態(tài)。因此,在絕熱條件下,一系列伏安法實(shí)驗(yàn)或一組間歇過充電實(shí)驗(yàn)(≤1C)可以有效獲得電池的半失效狀態(tài)。該方法得到了 LiCoO2 + Li(Ni0.5Co0.2Mn0.3)O2/石墨+SiOx電池的驗(yàn)證?們(nèi)阻增加率為0.4C Ωh-1可作為阻止熱失控的臨界內(nèi)阻判據(jù)。在電池過放電研究方面,本文研究揭示了在絕熱條件下電池過放電的熱行為和失效機(jī)理。結(jié)果表明,過放電過程中負(fù)極溫度始終高于正極。當(dāng)內(nèi)短路出現(xiàn)時(shí),熱量在電池卷繞結(jié)構(gòu)中積聚,導(dǎo)致電池表面溫度急劇升高,電流越大,短路放熱量越高。綜合ARC測(cè)試與容量增量分析,表明0.5 V時(shí)觀測(cè)到的放熱峰是由于銅集流體的溶解。過放電后電池的可恢復(fù)容量與SEI膜和隔膜的狀態(tài)有關(guān)。C80熱分析實(shí)驗(yàn)表明,在絕熱條件下電池經(jīng)0.2 C過放電至0 V時(shí),負(fù)極SEI膜分解,再循環(huán)一次后,新的SEI膜產(chǎn)生但穩(wěn)定性下降,開始分解溫度下降至55.1℃。XRD的結(jié)果表明,在過放電期間,正極活性材料的晶體結(jié)構(gòu)不變而負(fù)極的晶體結(jié)構(gòu)在一定程度上受到損害。
[Abstract]:High current charge discharge, the battery management system failure, the inconsistency between the internal resistance of the lithium ion battery is easy to cause the occurrence of overcharge or overdischarge, light to cause a reduction in battery capacity or battery failure, severe fever will lead out of control. In practical application, a single cell is often limited ventilation environment, therefore, the research of charging and carry out discharge lithium ion battery in the extreme conditions of ventilation can not only clear the battery overcharge, over discharge process of thermal behavior, also can deepen to the lithium ion battery overcharging and over discharging electric control (failure) source of knowledge, master control induced heating (failure) determined the main reason. The critical condition of electric charge control by quantitative prediction method and the establishment of semi failure state, provide theoretical basis and technical support for the industrial application of lithium ion batteries. The battery overcharge and electric control The mechanism, this paper carries out the research from three aspects. Firstly, from the angle of charging voltage and current, the battery cycle and acceleration calorimeter (ARC) method combined with the research on the ventilation conditions, over charge and current rate of commercial LiCoO2+Li (Ni0.5Co0.2Mn0.3) O2/ + SiOx graphite battery overcharge electric control behavior. Analysis shows that the hazard is greater than the constant current charging constant current constant voltage charged directly after the constant current charge. The side reaction heat in 0.1C, 0.2C, 0.5C, 1C and 2C in the experiment of overcharge for thermal runaway respectively contributed 82%, 84%, 80%, 60% and 40% of the energy in the thermal runaway when close. The voltage of the battery, there will be a turning point. In order to prevent the occurrence of battery thermal runaway, when the battery voltage reaches the inflection point, should be in 2 minutes to take effective measures to cool the battery. The inflection point voltage increases with the current rate of linear increase. From the battery producing chemical reaction To explore the chemical mechanism of filled thermal runaway. By scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis of LiCoO2+Li (Ni0.5Co0.2Mn0.3) decomposition products of soluble O2/ cathode material of +SiOx battery in SiOx. graphite from some residual anode area of layered graphite structure on the cathode of lithium deposition is presumably due to positive and negative the electrode spacing changes, not because of negative capacity saturation. The self-made Li (Ni0.5Co0.2Mn0.3) O2/ graphite battery X ray diffraction (XRD) test shows that the lattice parameters of cathode materials had charged with Ni02 and reduce production. Based on the chemical reaction reveals the relationship between the internal resistance of the battery is charged with thermal runaway in the process of evolution the prediction method, semi failure state is applicable to any small batteries. Under the adiabatic condition using volt ampere characteristic method and batch method are overcharge resistance with a charged battery roolls. State (SOC) increased the first decline after rising of the inflection point is further 150%SOC. by AC impedance method to verify and explain the inflection point is found due to the solid electrolyte interface film (SEI film) thickening, high-frequency performance in the impedance spectra in low frequency and semicircle separated from the battery into the half failure state. Therefore, under the adiabatic condition, a series of voltammetry experiments or a group of intermittent charging experiment (1C) semi failure state can effectively obtain the battery. This method has received LiCoO2 + Li (Ni0.5Co0.2Mn0.3) O2/ verification graphite +SiOx battery. The total increase of the internal resistance rate of 0.4C can be used as the criterion of critical resistance Omega H-1 prevent heat out of control. The excessive discharge of the battery research, this paper reveals the thermal behavior of over discharge of the battery under adiabatic condition and failure mechanism. The results show that the discharge of negative temperature is always higher than that of anode. When the internal short circuit When the heat accumulated in the battery winding structure, which causes the surface temperature of the battery increases sharply, the greater the current, short circuit heat is high. The comprehensive analysis of ARC test and capacity increment, exothermic peak observed that 0.5 V is due to dissolved copper collector. Experimental analysis shows that recovery capacity and SEI membrane and diaphragm the state of the.C80 thermal battery after discharge, the battery discharge by 0.2 C to 0 V under the adiabatic condition, negative electrode SEI decomposition, recycling after a new SEI membrane but the stability decreases, initial decomposition temperature dropped to 55.1 degrees.XRD the results show that during overdischarge, crystal the structure of cathode active material constant and crystal structure of anode damage to a certain extent.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張振芳;對(duì)于熱失控問題的系統(tǒng)對(duì)策[J];蓄電池;1993年01期
2 紀(jì)化成,趙曉蘭;閥控式鉛酸蓄電池的熱失控[J];蓄電池;1997年01期
3 從志賢,付艷玲;固定型閥控式鉛酸蓄電池?zé)崾Э噩F(xiàn)象淺析[J];蓄電池;2005年01期
4 郭自強(qiáng);;再談熱失控和脹肚問題[J];中國(guó)自行車;2009年12期
5 杭瑚,張立新,黃志剛,胡博路;閥控式鉛酸蓄電池中的氧循環(huán)與熱失控現(xiàn)象[J];蓄電池;1997年02期
6 閆智剛;;閥控式密封鉛酸蓄電池的熱失控[J];電動(dòng)自行車;2010年09期
7 張維軍;;閥控式鉛酸蓄電池過熱失控分析[J];遼寧科技學(xué)院學(xué)報(bào);2011年03期
8 劉炳華;;閥控式密封鉛蓄電池?zé)崾Э氐脑蚣邦A(yù)防[J];科技風(fēng);2010年23期
9 童一波,裘向明;固定型閥控式鉛酸蓄電池失效模式研究[J];電化學(xué);1997年03期
10 劉長(zhǎng)軍;申東雨;;微波加熱陶瓷中熱失控現(xiàn)象的分析與控制[J];中國(guó)科學(xué)(E輯:技術(shù)科學(xué));2008年07期
相關(guān)會(huì)議論文 前4條
1 劉長(zhǎng)軍;閆麗萍;黃卡瑪;;微波加熱中“熱失控”的一維數(shù)值模擬[A];2005'全國(guó)微波毫米波會(huì)議論文集(第三冊(cè))[C];2006年
2 王銘祥;;閥控密封鉛酸蓄電池的失水、熱失控故障原因分析及解決措施[A];2012年中國(guó)通信能源會(huì)議論文集[C];2012年
3 盧立麗;王松蕊;劉興江;;鋰離子電池的熱失控模擬[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
4 何亮明;杜,
本文編號(hào):1363500
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1363500.html