鈣鈦礦太陽(yáng)能電池中界面電子結(jié)構(gòu)的研究
發(fā)布時(shí)間:2017-12-28 02:27
本文關(guān)鍵詞:鈣鈦礦太陽(yáng)能電池中界面電子結(jié)構(gòu)的研究 出處:《中國(guó)科學(xué)院研究生院(上海應(yīng)用物理研究所)》2017年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 鈣鈦礦太陽(yáng)能電池 前驅(qū)體比例 界面能級(jí) 電子結(jié)構(gòu) XPS/UPS
【摘要】:近年來(lái),有機(jī)-無(wú)機(jī)材料雜化的鈣鈦礦太陽(yáng)能電池由于其優(yōu)異的光電性質(zhì)和簡(jiǎn)單的制備方法而得到越來(lái)越廣泛的關(guān)注,其光電轉(zhuǎn)換效率在短短的幾年時(shí)間內(nèi)從3.8%上升至22.1%,顯示出很強(qiáng)的商業(yè)化前景。轉(zhuǎn)換效率的迅速提升,一方面得益于鈣鈦礦旋涂成膜工藝改進(jìn)和器件結(jié)構(gòu)的發(fā)展、另一方面得益于鈣鈦礦薄膜界面優(yōu)化和新型電荷傳輸層的開(kāi)發(fā)等方面的進(jìn)步。然而鈣鈦礦太陽(yáng)能電池在商業(yè)化發(fā)展過(guò)程中,仍然還存在著幾個(gè)需要克服的難點(diǎn):環(huán)境穩(wěn)定性差、原料毒性、電池面積小、成本控制等。令人鼓舞的是,華中科技大學(xué)的韓宏偉教授首次制備出了100平方厘米大面積可印刷式的鈣鈦礦太陽(yáng)能電池器件,光電轉(zhuǎn)換效率可以達(dá)到10.4%,1000小時(shí)光照條件下,器件的性能沒(méi)有明顯的衰減,顯示出極大的商業(yè)化潛力。盡管人們?cè)阝}鈦礦太陽(yáng)能電池效率以及穩(wěn)定性的發(fā)展上已經(jīng)取得了重大的突破,但是由于有機(jī)界面存在和無(wú)機(jī)半導(dǎo)體理論不同的界面偶極、電荷極化、能帶彎曲等現(xiàn)象,而合適的界面能級(jí)關(guān)系到器件最終的性能,因此有必要對(duì)該鈣鈦礦界面電子結(jié)構(gòu)進(jìn)行深入的研究以進(jìn)一步理解其深層的物理機(jī)制并繼續(xù)推動(dòng)鈣鈦礦太陽(yáng)能電池的進(jìn)一步發(fā)展。本文主要通過(guò)X射線(xiàn)光電子能譜(XPS)、紫外光電子能譜(UPS)以及同步輻射掠入射X射線(xiàn)衍射(GIXRD)等手段,對(duì)鈣鈦礦薄膜的制備工藝(前驅(qū)體比例、胍鹽(GA)摻雜)、以及并五苯(Pentacene)和紅熒烯(Rubrene)空穴傳輸層和鈣鈦礦層之間界面電子結(jié)構(gòu)以及制備Rubrene/PEDOT:PSS鈣鈦礦太陽(yáng)能電池器件,采用復(fù)合空穴傳輸層以提高器件效率等方面進(jìn)行了系統(tǒng)的研究。主要研究?jī)?nèi)容以及研究成果如下:1、前驅(qū)體比例對(duì)鈣鈦礦薄膜形貌、晶體結(jié)構(gòu)及電子結(jié)構(gòu)影響的研究研究了鈣鈦礦薄膜制備時(shí),其前驅(qū)體溶液中甲氨碘(CH_3NH_3I)和碘化鉛(PbI_2)按照不同比例,對(duì)旋涂得到的鈣鈦礦薄膜的形貌、結(jié)構(gòu)、電子結(jié)構(gòu)的影響,并制備了相應(yīng)的器件,發(fā)現(xiàn)適當(dāng)提高前驅(qū)體溶液中CH_3NH_3I的比例,可以提高鈣鈦礦太陽(yáng)能電池的部分器件性能。2、鈣鈦礦A位胍鹽摻雜對(duì)鈣鈦礦薄膜的形貌結(jié)構(gòu)電子結(jié)構(gòu)的影響的研究通過(guò)對(duì)甲胺鉛碘鈣鈦礦的有機(jī)配體摻雜,以合適的比例將胍鹽和甲胺混合制備出鈣鈦礦薄膜,研究有機(jī)配體摻雜對(duì)鈣鈦礦薄膜的形貌結(jié)構(gòu)電子結(jié)構(gòu)的影響。3、Pentacene/CH_3NH_3PbI_3和Rubrene/CH_3NH_3PbI_3界面電子結(jié)構(gòu)研究通過(guò)XPS/UPS原位(in-situ)地對(duì)并五苯Pentacene/CH_3NH_3PbI_3和紅熒烯Rubrene/CH_3NH_3PbI_3界面的能級(jí)結(jié)構(gòu)做了系統(tǒng)的研究,發(fā)現(xiàn)在有機(jī)太陽(yáng)能電池中常用作空穴傳輸層地這兩種分子在能級(jí)上和鈣鈦礦地能級(jí)相匹配,在并五苯Pentacene/CH_3NH_3PbI_3和紅熒烯Rubrene/CH_3NH_3PbI_3界面處,在并五苯側(cè)和紅熒烯側(cè)都形成了向下(down-word)的能帶彎曲,這種能帶彎曲的形式有利于空穴在界面的提取,同時(shí)兩種分子的最低未占據(jù)態(tài)分子軌道能級(jí)(LUMO能級(jí))有比較高,可以有效地阻礙電子向空穴傳輸層傳輸,以降低電子-空穴在界面處復(fù)合的幾率。這些結(jié)果有助于了解載流子在界面的傳輸機(jī)制。4、紅熒烯作為空穴傳輸層的鈣鈦礦太陽(yáng)能電池器件的制備和表征制備了紅熒烯作為空穴傳輸層的鈣鈦礦太陽(yáng)能電池器件,最終通過(guò)使用PEDOT:PSS/Rubrene作為復(fù)合空穴傳輸層,鈣鈦礦太陽(yáng)能電池最高得到了13.52%的轉(zhuǎn)換效率。這主要是因?yàn)镻EDOT:PSS雖然具有良好的成膜性,但是功函數(shù)不是理想的,然而紅熒烯盡管能級(jí)匹配效果好,能帶彎曲利于空穴收集和阻擋電子注入,但成膜性不好;因此,采用復(fù)合傳輸層,同時(shí)利用PEDOT:PSS成膜性和紅熒烯能級(jí)匹配的優(yōu)勢(shì),可有效提升器件的效率。但由于紅熒烯的載流子傳輸效率遠(yuǎn)比PCBM的高,所以會(huì)形成比較顯著的J-V曲線(xiàn)滯后效應(yīng)。
[Abstract]:In recent years, perovskite solar cell organic inorganic hybrid materials due to its excellent optical properties and simple preparation method and get more and more attention, the photoelectric conversion efficiency in just a few years time increased from 3.8% to 22.1%, showing a strong commercial prospects. The rapid improvement of conversion efficiency is due to the improvement of perovskite spin coating process and the development of device structure. On the other hand, it is benefited from the optimization of perovskite membrane interface and the development of new charge transport layer. However, there are still several difficulties to overcome in the commercialization development of perovskite solar cells: poor environmental stability, raw material toxicity, small battery area, and cost control. Encouragingly, Huazhong University of Science and Technology professor Han Hongwei prepared for the first time a large area can be 100 square centimeters of perovskite solar cell devices, printing type, photoelectric conversion efficiency can reach 10.4%, 1000 hours light condition, the performance of the device without obvious attenuation, which shows the great potential for commercialization. Although people in the perovskite solar cell efficiency and stability and development has achieved a major breakthrough, but due to the organic interface and the interface dipole, different inorganic semiconductor theory charge polarization, band bending phenomenon, but the right level related to the final interface device performance, so it is necessary to further the development of in-depth study the electronic structure of perovskite interface to further understanding of the underlying physical mechanism and continue to promote the perovskite solar cell. This paper mainly through X ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) and synchrotron radiation grazing incident X ray diffraction (GIXRD) and other means, the preparation process of Perovskite Thin Films (precursor ratio, guanidine salt (GA), and five doping) and benzene (Pentacene) and rubrene (Rubrene) the hole transport layer and perovskite interface between electronic structure and preparation of Rubrene/PEDOT:PSS perovskite solar cell devices were studied using composite hole transporting layer to improve the efficiency of the device. The main research contents and results are as follows: 1. Study on the effect of precursor ratio on perovskite film morphology, crystal structure and electronic structure of Perovskite Thin Films during preparation of the precursor solution of ammonia iodine (CH_3NH_3I) and lead iodide (PbI_2) in different proportions, affect the morphology, structure, electronic structure of Perovskite Thin Films get on the spin coating, and the preparation of the corresponding device, find the appropriate increase of CH_3NH_3I in the precursor solution ratio can improve device performance of perovskite solar cell. Study on the effect of 2, A perovskite guanidine salt doping on the morphology and structure of Perovskite Thin film electronic structure of perovskite organic ligands lead methylamine iodine doped with appropriate proportion of guanidine salt and methylamine mixed preparation of Perovskite Thin film, effects of organic ligands on the morphology of Thin Film Doped Perovskite Structure electronic structure. 3, Pentacene/CH_3NH_3PbI_3 and Rubrene/CH_3NH_3PbI_3 interface electronic structure was studied by XPS/UPS in situ (in-situ) to do a systematic research on the structure and level of five - Pentacene/CH_3NH_3PbI_3 and rubrene Rubrene/CH_3NH_3PbI_3 interface, found in organic solar cells are commonly used as hole transport layer of the two kinds of molecular level and match in perovskite to level, and in five - Pentacene/CH_3NH_3PbI_3 and rubrene Rubrene/CH_3NH_3PbI_3 interface, and five in benzene side and rubrene side (down-word) formed a downward band bending, the band bending form to a hole in the interface extraction, and two molecules of the lowest unoccupied molecular orbital energy state (LUMO level) there is relatively high, can effectively block the electron transfer to the hole transport layer, in order to reduce the electron hole recombination at the interface. These results help to understand the transmission mechanism of the carrier at the interface. 4, rubrene perovskite solar cell devices as a hole transport layer, the preparation and characterization of preparation of rubrene as perovskite solar cell devices, a hole transport layer, finally by using PEDOT:PSS/Rubrene as a composite hole transporting layer, perovskite solar cell conversion efficiency of 13.52% has been the highest. This is mainly because the PEDOT:PSS has a good film, but the function is not ideal, however, although the level of rubrene effect, band bending for hole collection and electron injection barrier, but the film is not good; therefore, the composite transmission layer, and a matching film and red. The advantage of using graphene level PEDOT:PSS, can effectively improve the efficiency of the device. However, the carrier transmission efficiency of the red fluorenes is much higher than that of the PCBM, so the lagging effect of the J-V curve is significant.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(上海應(yīng)用物理研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM914.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉莉,姚熹;復(fù)雜組成鈣鈦礦材料中的納米分相[J];西安交通大學(xué)學(xué)報(bào);1995年09期
2 莊志強(qiáng);王蘊(yùn)輝;施紅陽(yáng);;鈮鎂酸鉛類(lèi)鈣鈦礦結(jié)構(gòu)鐵電多晶體的制備技術(shù)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
3 趙旭,栗萍,唐貴德,張變芳,禹日程;Nb摻雜對(duì)雙鈣鈦礦化合物居里溫度的影響[J];河北師范大學(xué)學(xué)報(bào);2004年04期
4 李福q,
本文編號(hào):1344218
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1344218.html
最近更新
教材專(zhuān)著