天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

中低溫余熱驅(qū)動(dòng)的正逆耦合循環(huán)系統(tǒng)集成研究

發(fā)布時(shí)間:2017-12-28 00:32

  本文關(guān)鍵詞:中低溫余熱驅(qū)動(dòng)的正逆耦合循環(huán)系統(tǒng)集成研究 出處:《中國(guó)科學(xué)院工程熱物理研究所》2017年博士論文 論文類(lèi)型:學(xué)位論文


  更多相關(guān)文章: 中低溫余熱 正逆耦合循環(huán) 熱壓縮 功冷聯(lián)產(chǎn) 低溫制冷 有效成分回收


【摘要】:隨著我國(guó)能源消費(fèi)需求持續(xù)增長(zhǎng)和環(huán)境污染等問(wèn)題日益嚴(yán)重,高效回收利用工業(yè)生產(chǎn)和生活中的余熱已經(jīng)成為我國(guó)節(jié)能減排的重要舉措。本文依托國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)、國(guó)家自然科學(xué)基金和國(guó)家科技支撐計(jì)劃等項(xiàng)目,圍繞中低溫余熱驅(qū)動(dòng)的正逆耦合循環(huán)系統(tǒng)開(kāi)展研究,探索了中低溫余熱利用的新方法,從關(guān)鍵過(guò)程能量轉(zhuǎn)換機(jī)理、系統(tǒng)集成和實(shí)驗(yàn)驗(yàn)證等方面開(kāi)展了研究。在正逆耦合循環(huán)中,吸收-發(fā)生構(gòu)成的熱壓縮過(guò)程是實(shí)現(xiàn)工業(yè)余熱,特別是低溫余熱梯級(jí)利用的重要途徑。通過(guò)深入分析熱壓縮過(guò)程,提出了以增壓率作為特征參數(shù)的熱壓縮過(guò)程模型。增壓率作為一個(gè)無(wú)量綱參數(shù),表征了熱壓縮過(guò)程實(shí)際升壓占極限升壓的比例。探究了熱壓縮過(guò)程對(duì)低溫余熱的能量轉(zhuǎn)化機(jī)理和熱壓縮過(guò)程的熱力學(xué)特性規(guī)律,發(fā)現(xiàn)增壓率作為特征參數(shù)可有效簡(jiǎn)化熱壓縮過(guò)程的設(shè)計(jì)和參數(shù)優(yōu)化。進(jìn)一步提出了熱壓縮過(guò)程在正逆耦合循環(huán)中的集成方式,研究了熱壓縮與機(jī)械壓縮耦合的熱力學(xué)性能及規(guī)律,為正逆耦合循環(huán)系統(tǒng)集成奠定了理論基礎(chǔ)。通過(guò)將熱壓縮過(guò)程與機(jī)械壓縮機(jī)進(jìn)行耦合,實(shí)現(xiàn)了正逆循環(huán)間的熱能和機(jī)械功的雙重耦合,構(gòu)建了中、低溫余熱互補(bǔ)利用的功冷聯(lián)產(chǎn)系統(tǒng)。中溫?zé)嵩赐ㄟ^(guò)混合工質(zhì)動(dòng)力循環(huán)轉(zhuǎn)換為機(jī)械功,低溫?zé)嵩赐ㄟ^(guò)熱壓縮過(guò)程和機(jī)械壓縮過(guò)程耦合完成制冷,機(jī)械壓縮耗功由混合工質(zhì)透平提供。該系統(tǒng)不僅能高效回收內(nèi)燃機(jī)煙氣余熱,為解決動(dòng)力余熱利用過(guò)程中的溫度斷層難題提供技術(shù)方案,還能全部回收利用缸套水余熱用于制取0℃以下的冷量。系統(tǒng)針對(duì)不同品位的熱源通過(guò)采用了不同的回收利用方式以減少不可逆損失,具有較好的熱力性能。經(jīng)濟(jì)性分析結(jié)果表明,該功冷聯(lián)產(chǎn)系統(tǒng)具備較好的經(jīng)濟(jì)效益和推廣價(jià)值。研究了一種回收透平排氣有效成分的新型開(kāi)式功冷聯(lián)產(chǎn)系統(tǒng),探索了提高有效成分回收潛力的新方法。該系統(tǒng)中透平排氣攜帶的較高溫冷凝熱在再沸器中為精餾過(guò)程提供熱負(fù)荷,較低溫冷凝熱用于預(yù)熱精餾塔進(jìn)料;透平排氣經(jīng)過(guò)降溫后形成的氣液兩相混合物中,氣相組分的有效成分(制冷劑)濃度與透平排氣相比明顯提高,適合在制冷中回收利用。新型開(kāi)式功冷聯(lián)產(chǎn)系統(tǒng)驗(yàn)證了正、逆循環(huán)間物質(zhì)耦合的有益效果,為正逆循環(huán)耦合提供了新思路。根據(jù)中低溫余熱的梯級(jí)利用機(jī)理,高品位熱能通過(guò)動(dòng)力循環(huán)轉(zhuǎn)換為功,低品位熱能通過(guò)熱壓縮過(guò)程用于提高氣態(tài)工質(zhì)壓力。將熱壓縮過(guò)程與機(jī)械壓縮機(jī)相結(jié)合,并用動(dòng)力循環(huán)的輸出功驅(qū)動(dòng)機(jī)械壓縮機(jī),構(gòu)建并研究了兩種新型低溫制冷系統(tǒng)。兩種系統(tǒng)的區(qū)別在于熱壓縮過(guò)程與機(jī)械壓縮機(jī)的耦合分別采用了復(fù)疊和復(fù)合兩種形式。對(duì)比研究結(jié)果表明,復(fù)合式低溫制冷具有更優(yōu)的熱力性能。節(jié)能機(jī)理分析結(jié)果表明,在逆循環(huán)中引入機(jī)械壓縮過(guò)程解決了制冷溫度過(guò)低導(dǎo)致熱壓縮過(guò)程性能急劇惡化的問(wèn)題;同時(shí),在熱源與吸收式制冷循環(huán)之間構(gòu)建混合工質(zhì)動(dòng)力循環(huán),減少了熱源與循環(huán)工質(zhì)的換熱溫差,實(shí)現(xiàn)了余熱的梯級(jí)利用,降低了系統(tǒng)的不可逆損失。通過(guò)對(duì)系統(tǒng)的熱力性能進(jìn)行敏感性分析,為系統(tǒng)進(jìn)一步優(yōu)化指明了方向。研制了中低溫動(dòng)力余熱驅(qū)動(dòng)的功冷聯(lián)產(chǎn)系統(tǒng)實(shí)驗(yàn)平臺(tái)。該實(shí)驗(yàn)平臺(tái)主機(jī)由氨水蒸氣發(fā)生子系統(tǒng)、透平膨脹作功子系統(tǒng)和氨水吸收式制冷子系統(tǒng)構(gòu)成,系統(tǒng)設(shè)計(jì)發(fā)電功率為20 kW,制冷量為40 kW。配套的輔助實(shí)驗(yàn)系統(tǒng)包括煙氣發(fā)生子系統(tǒng)、冷量輸出子系統(tǒng)、冷卻水循環(huán)子系統(tǒng)、數(shù)據(jù)監(jiān)測(cè)與采集子系統(tǒng)、安全防護(hù)子系統(tǒng)等。通過(guò)氨水混合工質(zhì)發(fā)電性能實(shí)驗(yàn)和氨水吸收式制冷性能實(shí)驗(yàn)研究探索了實(shí)驗(yàn)平臺(tái)各子系統(tǒng)的運(yùn)行特性,為后期進(jìn)一步開(kāi)展功冷聯(lián)產(chǎn)系統(tǒng)性能實(shí)驗(yàn)和變工況實(shí)驗(yàn)奠定了基礎(chǔ)。
[Abstract]:As China's energy consumption demand continues to grow and environmental pollution is becoming more and more serious, efficient recycling of waste heat from industrial production and life has become an important measure for energy saving and emission reduction in China. Based on the national key basic research and development program (973 Program), National Natural Science Foundation and the national science and technology support program project, drive around the middle and low temperature waste heat coupling inverse circulation system to carry out research, to explore a new method of low temperature waste heat utilization, carry out research from the key process of energy conversion mechanism, system integration and test verification etc.. In the positive and inverse coupling cycle, the thermal compression process composed of absorption and occurrence is an important way to realize industrial waste heat, especially the cascade utilization of low temperature waste heat. Through the deep analysis of the thermal compression process, a thermal compression process model is proposed, which takes the supercharging rate as the characteristic parameter. As a dimensionless parameter, the turbocharging rate represents the proportion of the actual rising pressure in the thermal compression process to the limit lift. The energy transformation mechanism and the thermodynamic characteristics of hot compression process in the process of hot compression are explored. It is found that the design and parameter optimization of heat compression process can be simplified effectively by using the supercharging rate as the characteristic parameter. The integration mode of hot compression process in positive and negative coupling cycle is further presented. The thermodynamic properties and laws of thermal compression and mechanical compression coupling are studied, which lays a theoretical foundation for the integration of positive and negative coupled cycle system. By coupling the thermal compression process with the mechanical compressor, we achieve the dual coupling between thermal energy and mechanical work between the positive and negative cycles, and build a power cooling co production system with complementary utilization of medium and low temperature waste heat. The temperature heat source through the mixed refrigerant cycle is converted to mechanical power, low temperature heat source by hot compression process and mechanical compression process coupling complete refrigeration, mechanical compression work provided by the mixed refrigerant turbine. The system can not only efficiently recover the residual heat from the internal combustion engine flue gas, but also provide technical solutions for solving the temperature and fault problems in the process of power waste heat utilization, and it can also recycle the residual heat from cylinder liner to produce the cooling capacity below 0 degrees. The system can reduce the irreversible loss by using different recycling methods for different grade heat sources, and it has better thermal performance. The result of economic analysis shows that the power cooling system has good economic and promotion value. A new open type active cooling system for recovery of the effective components of the turbine exhaust is studied, and a new method to improve the recovery potential of the effective components is explored. This system carry high temperature turbine exhaust condensing heat in the reboiler of distillation process with heat load, low temperature condensation heat to preheat the feed to the column; the gas-liquid mixture is formed after cooling the turbine exhaust gas phase, the effective components group of points (refrigerant) concentration and turbine exhaust was higher than suitable for use in refrigeration, recovery. The new open type power cooling system validates the beneficial effect of the coupling between the positive and the reverse circulation, and provides a new idea for the positive and reverse cycle coupling. According to the cascade utilization mechanism of medium and low temperature waste heat, the high grade heat energy is converted into power through power cycle. Low grade heat energy is used to improve gas working pressure by hot compression process. Two new cryogenic refrigerating systems are constructed and studied by combining the thermal compression process with the mechanical compressor and driving the mechanical compressor with the output power of the dynamic cycle. The difference between the two systems is that the thermal compression process and the coupling of the mechanical compressor are used in two forms of overlapping and recombination respectively. The results of comparative study show that the composite cryogenic refrigeration has better thermal performance. Energy saving mechanism in the inverse analysis results show that the compression process is introduced to solve the mechanical cycle refrigeration temperature too low and cause a sharp deterioration in the performance of hot compression process; at the same time, the absorption refrigeration cycle with mixed refrigerant cycle construction heat, reduce the temperature difference and heat circulation medium, the waste heat cascade utilization and reduce the irreversible loss. Through the sensitivity analysis of the thermodynamic performance of the system, the direction is pointed out for the further optimization of the system. The experimental platform of the power cooling co production system driven by the medium and low temperature power waste heat is developed. The experimental platform is made up of ammonia steam generation subsystem, turbine expansion power subsystem and ammonia water absorption refrigeration subsystem. The power generation system is designed to be 20 kW and the cooling capacity is 40 kW. The auxiliary experimental system includes flue gas generation subsystem, cold output subsystem, cooling water circulation subsystem, data monitoring and acquisition subsystem, safety protection subsystem and so on. The operation characteristics of each subsystem of the experimental platform were explored through ammonia power mixture performance test and ammonia water absorption refrigeration performance experiment, which laid the foundation for further developing the performance test and variable condition experiment of the power cooling co production system.
【學(xué)位授予單位】:中國(guó)科學(xué)院工程熱物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TK115

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳天權(quán);;低溫余熱利用及其開(kāi)發(fā)[J];現(xiàn)代節(jié)能;1992年01期

2 施國(guó)華,張淑貴;低溫余熱回收[J];能源技術(shù);2000年01期

3 李飛雄;論低溫余熱節(jié)能發(fā)電[J];節(jié)能技術(shù);2001年06期

4 李波;;論低溫余熱節(jié)能發(fā)電[J];應(yīng)用能源技術(shù);2007年11期

5 張崇偉;張曉光;田慧;孫惠山;;煉油廠(chǎng)低溫余熱綜合利用技術(shù)方案[J];中外能源;2012年08期

6 馮霄,錢(qián)立倫,蘇長(zhǎng)蓀;低溫余熱動(dòng)力回收系統(tǒng)中確定最佳蒸發(fā)溫度的熱力學(xué)原則和計(jì)算式[J];動(dòng)力工程;1985年05期

7 馮霄;;低溫余熱動(dòng)力回收系統(tǒng)確定蒸發(fā)溫度方法的比較[J];能源;1988年02期

8 高迎春,程剛,楊鳴,,靜濤;低溫余熱的動(dòng)力回收[J];節(jié)能技術(shù);1994年03期

9 楊慶娣,匡江紅;低溫余熱利用分析[J];節(jié)能;2004年08期

10 陳軍;用熱泵系統(tǒng)回收油田低溫余熱[J];能源與環(huán)境;2005年02期

相關(guān)會(huì)議論文 前7條

1 閻雪峰;;如何充分利用好煉廠(chǎng)低溫余熱[A];加入WTO和中國(guó)科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對(duì)策(下冊(cè))[C];2002年

2 張穎;桂其林;王曉明;;寶鋼低溫余熱利用現(xiàn)狀及前景分析[A];2013年全國(guó)冶金能源環(huán)保生產(chǎn)技術(shù)會(huì)論文集[C];2013年

3 陳新國(guó);陳清林;;基于源頭優(yōu)化和終端回收的石化企業(yè)低溫余熱綜合利用[A];中國(guó)化工學(xué)會(huì)2009年年會(huì)暨第三屆全國(guó)石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(下)[C];2009年

4 孫惠山;李勝山;傅宗茂;董石正;;煉油廠(chǎng)低溫余熱利用與低溫濕汽發(fā)電設(shè)計(jì)[A];中國(guó)化工學(xué)會(huì)2009年年會(huì)暨第三屆全國(guó)石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(上)[C];2009年

5 梁鈺;;奧格利低溫余熱回收工藝技術(shù)進(jìn)展[A];第七屆全國(guó)重有色金屬冶煉煙氣處理及低位熱能回收、酸性廢水處理技術(shù)研討會(huì)論文集[C];2010年

6 李新禹;徐杰;;太陽(yáng)能與低溫余熱聯(lián)合發(fā)電系統(tǒng)性能研究[A];紡織空調(diào)除塵高效節(jié)能減排技術(shù)研討會(huì)論文集[C];2010年

7 趙宗昌;張曉冬;;低溫余熱驅(qū)動(dòng)的氨吸收/壓縮聯(lián)合制冷循環(huán)的熱力性能分析[A];中國(guó)化工學(xué)會(huì)2009年年會(huì)暨第三屆全國(guó)石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(上)[C];2009年

相關(guān)重要報(bào)紙文章 前10條

1 記者 李競(jìng)立;首座國(guó)產(chǎn)“低溫余熱電站”在滇建成投產(chǎn)[N];云南日?qǐng)?bào);2008年

2 李競(jìng)立邋傅小冰;我國(guó)首座低溫余熱電站在云南建成投產(chǎn)[N];中國(guó)質(zhì)量報(bào);2008年

3 通訊員 劉海波;九嶷驕陽(yáng)將建純低溫余熱電站[N];永州日?qǐng)?bào);2010年

4 記者 龐蘭英;昆鋼“5兆瓦低溫余熱電站”項(xiàng)目投產(chǎn)[N];中國(guó)冶金報(bào);2008年

5 天津水泥工業(yè)設(shè)計(jì)研究院 張富 張福濱;熟料生產(chǎn)線(xiàn)純低溫余熱電站工程設(shè)計(jì)與應(yīng)用[N];中國(guó)建材報(bào);2009年

6 記者 龐蘭英;純低溫余熱循環(huán)利用節(jié)能技術(shù)推廣會(huì)在昆明召開(kāi)[N];中國(guó)冶金報(bào);2010年

7 本報(bào)記者 徐克強(qiáng) 通訊員 賀路啟;金隅集團(tuán)水泥企業(yè):將全部實(shí)現(xiàn)新型干法水泥廢氣純低溫余熱利用[N];經(jīng)濟(jì)日?qǐng)?bào);2008年

8 張玉娟;濟(jì)鋼自主研發(fā)工業(yè)余熱利用技術(shù)項(xiàng)目成功投用[N];世界金屬導(dǎo)報(bào);2012年

9 黎建華;首套低溫余熱汽輪發(fā)電機(jī)組投運(yùn)[N];中國(guó)工業(yè)報(bào);2006年

10 記者 郝玲;鐵新水泥8MW純低溫余熱項(xiàng)目并網(wǎng)發(fā)電[N];鐵嶺日?qǐng)?bào);2009年

相關(guān)博士學(xué)位論文 前2條

1 陳宜;中低溫余熱驅(qū)動(dòng)的正逆耦合循環(huán)系統(tǒng)集成研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年

2 薛建良;基于石化企業(yè)低溫?zé)峄厥諆?yōu)化的含鹽濃水濃縮關(guān)鍵技術(shù)研究[D];中國(guó)石油大學(xué)(華東);2013年

相關(guān)碩士學(xué)位論文 前8條

1 黃寧燕;BG焦?fàn)t煙氣低溫余熱深度回收項(xiàng)目建設(shè)期成本管理研究[D];東北大學(xué);2014年

2 王憧華;低溫余熱有機(jī)朗肯循環(huán)發(fā)電系統(tǒng)穩(wěn)態(tài)特性仿真及性能研究[D];中南大學(xué);2014年

3 徐衛(wèi)東;油氣集輸過(guò)程低溫余熱回收模擬試驗(yàn)及工程應(yīng)用研究[D];東北石油大學(xué);2010年

4 彭漢明;低溫余熱驅(qū)動(dòng)的液體除濕技術(shù)研究[D];華南理工大學(xué);2012年

5 崔超;基于永磁發(fā)電機(jī)的低溫余熱熱機(jī)轉(zhuǎn)換效率研究[D];沈陽(yáng)工業(yè)大學(xué);2014年

6 劉濤;原位注熱開(kāi)采油頁(yè)巖低溫余熱有機(jī)朗肯循環(huán)(ORC)發(fā)電系統(tǒng)[D];太原理工大學(xué);2012年

7 董勝明;工業(yè)余熱ORC發(fā)電系統(tǒng)應(yīng)用研究[D];天津大學(xué);2014年

8 和婷;中低溫發(fā)電技術(shù)研究[D];華北電力大學(xué);2013年



本文編號(hào):1343876

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1343876.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)6d4b9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com