空?qǐng)鏊煤蟪涮钸B續(xù)開采膠結(jié)體強(qiáng)度模型及其應(yīng)用
發(fā)布時(shí)間:2017-12-26 19:39
本文關(guān)鍵詞:空?qǐng)鏊煤蟪涮钸B續(xù)開采膠結(jié)體強(qiáng)度模型及其應(yīng)用 出處:《昆明理工大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 空?qǐng)鏊煤蟪涮畈傻V法 兩步驟 強(qiáng)度 膠結(jié)充填體 尾砂充填體 穩(wěn)定性
【摘要】:隨著綠色開采技術(shù)的發(fā)展,以及國(guó)家固體非能源礦產(chǎn)"三率"評(píng)價(jià)標(biāo)準(zhǔn)的推行,充填采礦法必將得到廣泛的應(yīng)用。盤區(qū)機(jī)械化連續(xù)開采、安全高效、低成本及低貧損是充填采礦技術(shù)的核心研究主題。兩步驟的空?qǐng)鏊煤蟪涮罘ㄊ情_采礦石圍巖中等穩(wěn)固、中厚及以上礦體的主體采礦方法。該法分兩步驟回采,礦柱膠結(jié)充填,礦房非膠結(jié)充填。為最大限度提高礦石回收率,該法已發(fā)展為無(wú)礦柱連續(xù)開采模式。穩(wěn)定的膠結(jié)充填體形成的支撐框架是回采礦房的安全保障。如何科學(xué)合理地確定膠結(jié)體強(qiáng)度是空?qǐng)鏊煤蟪涮罘ǖ年P(guān)鍵,也關(guān)系到降低充填成本的現(xiàn)實(shí)要求。當(dāng)前,缺乏對(duì)該類膠結(jié)充填體所需強(qiáng)度的系統(tǒng)研究,其強(qiáng)度設(shè)計(jì)大多采用經(jīng)驗(yàn)類比法等,往往造成充填體強(qiáng)度與工程實(shí)際要求不符。有的礦山因充填體強(qiáng)度不足發(fā)生充填體崩塌,有的礦山則因充填體強(qiáng)度過高而造成充填成本居高不下影響效益,可見科學(xué)合理的膠結(jié)體強(qiáng)度,直接影響到礦體安全、高效開采及礦石開采率指標(biāo)。因此,有必要根據(jù)兩步驟空?qǐng)鏊煤蟪涮罘ǖ墓に囂攸c(diǎn),基于充填體的受力狀態(tài),建立膠結(jié)充填體的強(qiáng)度模型,這對(duì)深化充填采礦理論研究和指導(dǎo)礦山生產(chǎn)實(shí)踐都具有重要意義。本文通過分析兩步驟空?qǐng)鏊煤蟪涮罘ㄩ_采步驟的變化對(duì)膠結(jié)充填體受力狀態(tài)的影響,結(jié)合充填體作用機(jī)理的研究現(xiàn)狀,認(rèn)為膠結(jié)充填體的力學(xué)作用主要表現(xiàn)為改善頂板巖體受力狀態(tài)支撐頂板破碎巖體、為側(cè)幫卸載巖塊的滑移趨勢(shì)提供側(cè)限壓力、抵抗采場(chǎng)閉合和限制尾砂流動(dòng),基于膠結(jié)充填體為"自立性人工礦柱"特點(diǎn)開展建模及研究工作。研究方法及成果如下:(1)通過對(duì)大紅山銅礦空?qǐng)鲰敯蹇缏鋵?shí)測(cè)結(jié)果的統(tǒng)計(jì)分析,建立了平衡拱高度與采場(chǎng)結(jié)構(gòu)尺寸、圍巖穩(wěn)定性的關(guān)系。將采場(chǎng)頂板平衡拱與膠結(jié)充填體接觸部分對(duì)應(yīng)拱頂石重力視為巖層作用于膠結(jié)充填體頂部的壓力,確定了膠結(jié)充填體頂部壓力的計(jì)算方法。(2)以滑移角確定采場(chǎng)圍巖片幫范圍,指出側(cè)幫圍巖滑移面上抗滑阻力與膠結(jié)充填體作用力共同保持具有滑移趨勢(shì)的三維楔形體穩(wěn)定,采用楔體滑動(dòng)理論建立了采場(chǎng)側(cè)幫滑移塊體的極限平衡狀態(tài)方程,并推導(dǎo)了采場(chǎng)側(cè)幫對(duì)膠結(jié)體的壓力。(3)根據(jù)尾砂三聯(lián)桿高壓固結(jié)實(shí)驗(yàn)結(jié)果,分析得出尾砂密度隨壓力的變化關(guān)系滿足冪函數(shù)特征。通過分析自重條件下采場(chǎng)內(nèi)任意高度尾砂微元體的平衡條件,建立了大體積尾砂充填體自壓密規(guī)律(即尾砂密度隨高度的變化關(guān)系)。采用Fluent模擬采場(chǎng)內(nèi)尾砂密度的分布狀態(tài),結(jié)果表明,相同高度條件下數(shù)值模擬結(jié)果與模型計(jì)算結(jié)果密度最大差值為0.062t/m3,最小差值為0.001t/m3,平均密度相差0.011t/m3,結(jié)果高度吻合。(4)采用莫爾-庫(kù)侖準(zhǔn)則及楔體滑動(dòng)理論,分析膠結(jié)體和尾砂充填體接觸面上尾砂單元體極限應(yīng)力狀態(tài)以及尾砂三維楔形體的極限平衡狀態(tài),結(jié)合尾砂自壓密規(guī)律,分別建立了尾砂充填體對(duì)膠結(jié)體側(cè)壓力的計(jì)算方法,兩種分析方法雖然不同,但卻能推導(dǎo)出相同的結(jié)果。(5)綜合以上研究?jī)?nèi)容,建立了兩步驟空?qǐng)鏊煤竽z結(jié)充填體最不利狀態(tài)下(一側(cè)臨空、一側(cè)受非膠結(jié)尾砂側(cè)壓力條件下)的強(qiáng)度模型,包括內(nèi)聚力計(jì)算模型、抗壓強(qiáng)度計(jì)算模型和抗剪強(qiáng)度計(jì)算模型。模型充分考慮了膠結(jié)充填體結(jié)構(gòu)尺寸、頂板松散巖體重力、圍巖作用力、膠結(jié)充填體與圍巖之間的接觸條件以及尾砂充填體對(duì)膠結(jié)體側(cè)壓力等因素,更符合采場(chǎng)實(shí)際情況。(6)采用FLAC 3D建立了大紅山銅礦385中段48-54線區(qū)段的數(shù)值模型,根據(jù)空?qǐng)鏊煤竽z結(jié)體強(qiáng)度模型計(jì)算結(jié)果(強(qiáng)度隨高度的變化關(guān)系),對(duì)區(qū)段內(nèi)膠結(jié)礦柱分層賦值強(qiáng)度參數(shù)。根據(jù)試塊強(qiáng)度實(shí)驗(yàn)和應(yīng)力應(yīng)變實(shí)驗(yàn)結(jié)果,選擇膠結(jié)礦柱分層變形參數(shù)。選用Model morh(本構(gòu)模型為莫爾-庫(kù)侖模型)進(jìn)行計(jì)算。結(jié)果表明,385中段48-54線區(qū)段內(nèi)膠結(jié)礦柱按設(shè)計(jì)的強(qiáng)度參數(shù)及分層充填方式條件下,在區(qū)段回采過程中均能保持穩(wěn)定。(7)本文研究成果應(yīng)用于大紅山銅礦48-54線區(qū)段大盤區(qū)空?qǐng)鏊煤蟪涮钸B續(xù)開采的生產(chǎn)實(shí)踐。經(jīng)礦山統(tǒng)計(jì),共采出礦石2238919t,平均品位0.45%,貧化率10.03%,回收率87.5%,盤區(qū)生產(chǎn)能力達(dá)2487t/d。區(qū)段內(nèi)膠結(jié)礦柱服務(wù)至整個(gè)區(qū)段回采結(jié)束未發(fā)生大規(guī)?逅。工業(yè)應(yīng)用證明,依據(jù)本文建立的膠結(jié)充填體強(qiáng)度模型設(shè)計(jì)的充填體強(qiáng)度及配合比符合大紅山銅礦生產(chǎn)實(shí)踐要求。論文研究成果對(duì)深化充填采礦理論研究具有重要意義,對(duì)相似礦山具有較高的應(yīng)用和推廣價(jià)值。
[Abstract]:With the development of green mining technology and the implementation of the "three rate" evaluation standard of national solid non energy mineral resources, the filling mining method will be widely used. Continuous mechanized mining, safety and efficiency, low cost and low poverty are the key research topics of filling mining technology. The two step method of open stope filling is the mining of ore rock solid, medium thick and ore body mining method. The method is divided into two steps, the pillar of cemented filling stope non cemented filling. In order to maximize the recovery of ore, the method has been developed into a continuous mining mode without pillar. The formation of cemented backfill support frame stability is the security of the mining stope. How to scientifically and reasonably determine the cementation strength is the key of open stope filling method, but also to reduce the cost of filling the practical requirements. At present, there is no systematic research on the strength required for such cemented filling body. Most of the strength design is based on experience analogy method, which often results in inconsistent strength of filling body and engineering practice. Some mines cause filling body collapse due to insufficient strength of filling body. Some mines result in high cost of filling due to high strength of filling body, which results in high efficiency. Therefore, scientific and reasonable cementation strength directly affects the safety, efficient mining and ore productivity index. Therefore, it is necessary according to the technical characteristics of the two steps of open stope filling method, the stress state of backfill based on strength, model of filling, which is of great significance to deepen the theoretical research and production practice of filling mining guide. The change of two steps of open stope backfill mining step effect analysis on the stresses of filling, according to the status quo of filling body mechanism, that the mechanical effect of filling is mainly to improve the stress state of the rock in the roof supporting roof broken rock, providing resistance to stope closure and limit tailings flow pressure the side limit of side slip tendency of rock block, filling based on the development of the work of modeling and Research on independence of artificial pillar "characteristics. Research methods and results are as follows: (1) through the statistics of Dahongshan Copper Mine Stope Roof Caving results analysis, established the relationship between balanced arch height and size of the stope structure, surrounding rock stability. The calculation method of the top pressure of cemented backfill is determined according to the pressure of the top crown balance arch and the cemented filling part, which corresponds to the stress of the top crown acting on the top of the cemented filling body. (2) to determine the slip angle of stope surrounding rock spalling scope, pointed out that the side slip force of anti sliding rock body resistance and cemented together maintain three-dimensional wedge stability with sliding trend, the wedge theory establishes the state equation of limit equilibrium of stope side sliding block, and deduced stope side of the cement body pressure. (3) according to the experimental results of the high pressure consolidation of the tailings triplex, it is found that the relation between the density of the tailings and the pressure is satisfied with the power function. By analyzing the equilibrium condition of the tailings micro element with arbitrary height under the condition of self weight, the self compaction law of tailings filling body is established, that is, the relationship between tailings density and height. Fluent is used to simulate the distribution state of tailings density in the stope. The results show that under the same height condition, the maximum difference between numerical simulation results and model calculation results is 0.062t/m3, the minimum difference is 0.001t/m3, and the average density difference is 0.011t/m3, the result is highly consistent. (4) by using the Mohr Coulomb criterion and wedge sliding contact theory, analysis of cemented tailings filling body and on the surface of tailings unit limit stress state and tailings 3D wedge limit equilibrium state, combined with the self compaction of tailings, pressure calculating method of cemented tailing backfill body side were established, two methods are different, but it can derive the same results. (5) based on the above research, the most unfavorable two steps of open stope filling condition is established (one side, one side by airport uncemented sand under lateral pressure) strength of the model, including the calculation model and calculation model of shear strength and compressive strength of the cohesive force calculation model. The model takes full account of the structural size of cemented filling body, the gravity of the loose rock mass, the force acting on the surrounding rock, the contact condition between the cemented backfill body and the surrounding rock, and the side pressure of tailings filling body on the cementation body, which is more consistent with the actual situation of the stope. (6) to establish a numerical model of Dahongshan Copper Mine 385 middle line sections with FLAC 48-54 3D, according to the results of open stope cementation strength model (intensity variation with height, relation) parameters of the backfill pillar layered section strength assignment. The stratified deformation parameters of the cemented pillar are selected on the basis of the test and stress strain test results of the test block. Model morh (constitutive model for Mohr Coulomb model) is used to calculate. The results show that the cementation pillar in the 385 middle 48-54 line section is stable under the condition of design strength parameters and stratified filling mode. (7) the results of this study used in the production practice of Dahongshan Copper 48-54 line segment market area of open stope filling of continuous mining. Through the mine statistics, the ore 2238919t was collected, the average grade was 0.45%, the dilution rate was 10.03%, the recovery rate was 87.5%, and the production capacity of the disk area was up to 2487t/d. The cemented pillar service in the section to the end of the whole section did not collapse in a large scale. It is proved by industrial application that the strength and mix ratio of the filling body designed according to the strength model of cemented filling body established in this paper meet the requirements of the production practice of the great Hongshan copper mine. The research results of this paper are of great significance for deepening the research on the theory of filling mining, and have high application and popularization value for similar mines.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD853.34;TD862.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王R,
本文編號(hào):1338592
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1338592.html
最近更新
教材專著