基于遺傳算法對梭車轉(zhuǎn)向機構(gòu)的優(yōu)化
本文選題:梭車 + 轉(zhuǎn)向機構(gòu) ; 參考:《太原理工大學》2017年碩士論文
【摘要】:無軌膠輪梭車作為一種重要的輔助運輸設(shè)備,它工作在連續(xù)性采煤機之后,往返于連續(xù)性采煤機和破碎機之間,運輸連續(xù)性采煤機采集下來的煤塊并將其卸載至破碎機的料斗內(nèi)。無軌膠輪梭車在礦井下運行時需要在巷道中進行轉(zhuǎn)向運動,此時轉(zhuǎn)向機構(gòu)發(fā)揮著重要的作用,在轉(zhuǎn)向過程中要求梭車能夠具有更小的轉(zhuǎn)彎半徑和轉(zhuǎn)向阻力矩。目前對轉(zhuǎn)向機構(gòu)的研究大多數(shù)以轉(zhuǎn)向機構(gòu)中從動轉(zhuǎn)向輪的實際轉(zhuǎn)向角度和理論上的期望轉(zhuǎn)向角度之間的誤差最小作為目標函數(shù)來進行優(yōu)化,而對轉(zhuǎn)向機構(gòu)的轉(zhuǎn)彎半徑最小和轉(zhuǎn)向阻力矩最小兩個目標函數(shù)同時進行優(yōu)化設(shè)計并沒有過多的研究。因為遺傳算法相比于其他優(yōu)化方法有很多優(yōu)點,所以本文使用遺傳算法以無軌膠輪梭車轉(zhuǎn)向機構(gòu)的主銷中心距和車輪的極限轉(zhuǎn)向角度為優(yōu)化參數(shù),以實現(xiàn)轉(zhuǎn)向時無軌膠輪梭車受到的阻力矩和轉(zhuǎn)彎半徑最小為優(yōu)化目標來完成優(yōu)化設(shè)計。本課題對TY9FB型梭車(以下簡稱梭車)的轉(zhuǎn)向機構(gòu)進行了以下分析和研究:1.創(chuàng)建了梭車轉(zhuǎn)向機構(gòu)的數(shù)學模型及優(yōu)化設(shè)計所需的目標函數(shù)。首先,分析了梭車的轉(zhuǎn)向機構(gòu)在轉(zhuǎn)向過程中的運行原理。接著,按照轉(zhuǎn)向時轉(zhuǎn)向阻力矩和轉(zhuǎn)彎半徑的分析圖,建立了轉(zhuǎn)向阻力矩和轉(zhuǎn)彎半徑的數(shù)學模型,并分析了影響因素為主銷中心距和轉(zhuǎn)向極限角度。最后,以轉(zhuǎn)向機構(gòu)的主銷中心距和外側(cè)車輪的極限角度為優(yōu)化參數(shù),以轉(zhuǎn)向阻力矩和轉(zhuǎn)彎半徑最小為優(yōu)化目標,創(chuàng)建了優(yōu)化目標函數(shù)。2.對目標函數(shù)進行了優(yōu)化計算。首先,充分了解了遺傳算法的工作原理;然后,使用matlab遺傳算法箱對目標函數(shù)進行了優(yōu)化計算,得出了目標函數(shù)的最優(yōu)值及對應的優(yōu)化參數(shù)值,并對優(yōu)化前后的轉(zhuǎn)向機構(gòu)結(jié)構(gòu)參數(shù)進行了對比。3.建立了梭車的虛擬樣機模型。按照委托單位所提供的機構(gòu)尺寸,運用ugnx7.0軟件創(chuàng)建了優(yōu)化前的梭車模型,根據(jù)遺傳算法優(yōu)化后轉(zhuǎn)向機構(gòu)的參數(shù)尺寸創(chuàng)建了優(yōu)化后的梭車模型。然后將創(chuàng)建好的ug模型文件導入到adams軟件中,并在模型中施加質(zhì)量,添加車輪、路面以及運動約束、接觸等,創(chuàng)建了優(yōu)化前和優(yōu)化后梭車的虛擬樣機模型。4.對優(yōu)化前和優(yōu)化后梭車的虛擬樣機模型進行了仿真和結(jié)果分析。首先,在adams中通過原地轉(zhuǎn)向仿真得到了優(yōu)化前和優(yōu)化后梭車原地轉(zhuǎn)向狀態(tài)下的阻力矩曲線圖,并將轉(zhuǎn)向阻力矩的仿真值和計算得到的理論值進行了比較分析。然后,通過運動狀態(tài)下進行轉(zhuǎn)向仿真得到了優(yōu)化前和優(yōu)化后梭車的轉(zhuǎn)彎半徑和轉(zhuǎn)向時受到的阻力矩的仿真曲線圖,并把優(yōu)化前和優(yōu)化后的結(jié)果數(shù)據(jù)進行了比較分析。5.對優(yōu)化前和優(yōu)化后梭車轉(zhuǎn)向機構(gòu)的橫拉桿受力后的應力和變形量進行了有限元分析。因為橫拉桿在轉(zhuǎn)向機構(gòu)中傳遞力與運動,所以對優(yōu)化前和優(yōu)化后橫拉桿的應力和變形量進行了有限元分析,并把優(yōu)化前和優(yōu)化后橫拉桿的最大應力和最大變形量進行了分析對比。本課題運用了遺傳算法這種高效的優(yōu)化設(shè)計方法,并且結(jié)合了ug建模軟件和ADAMS仿真分析軟件,對梭車轉(zhuǎn)向時的阻力矩和轉(zhuǎn)彎半徑進行了優(yōu)化,使得梭車在轉(zhuǎn)向時具有更小的轉(zhuǎn)彎半徑和轉(zhuǎn)向阻力矩,從而提高了梭車的機動性和操控性。高效的優(yōu)化方法和建模仿真軟件的使用彌補了傳統(tǒng)優(yōu)化設(shè)計研發(fā)成本高和周期長等缺點,并且為轉(zhuǎn)向機構(gòu)的轉(zhuǎn)彎半徑和轉(zhuǎn)向阻力矩優(yōu)化提供了一種新的方法和方向。
[Abstract]:As an important auxiliary transportation equipment, the trackless rubber wheel shuttle works after a continuous shearer and goes back and forth between the continuous shearer and the crusher to transport the coal blocks collected by the continuous shearer and unload it into the hopper of the crusher. The trackless rubber wheel shuttle bus needs to be turned in the roadway when it runs under the mine. The steering mechanism plays an important role at this time. In the process of steering, the shuttle car is required to have smaller turning radius and steering resistance moment. At present, most of the research on steering mechanism is based on the actual steering angle of the steering wheel in the steering mechanism and the minimum error between the theoretical expected steering angles as the objective function. The optimization design is not too much research on the minimum turning radius of the steering mechanism and the minimum two objective functions of the steering resistance torque. Because the genetic algorithm has many advantages compared with other optimization methods, the genetic algorithm is used in this paper to take the main pin center distance and the wheel of the steering mechanism of the trackless rubber wheel spindle. The ultimate steering angle is optimized to optimize the design of the steering mechanism of the trackless wheel shuttle bus with the minimum turning radius and the minimum turning radius. The following analysis and research are carried out on the steering mechanism of the TY9FB type shuttle bus (hereinafter referred to as the shuttle vehicle): 1. the mathematical model and optimization design of the shuttle steering mechanism are created. First, the operating principle of the steering mechanism of the shuttle is analyzed. Then, the mathematical model of the steering resistance moment and the turning radius is established according to the analysis diagram of the steering resistance moment and the turning radius, and the main pin center distance and the steering limit angle are analyzed. Finally, the steering mechanism is used. The ultimate angle of the main pin center distance and the lateral wheel is optimized. The optimization objective function.2. is created to optimize the target function. First, the working principle of the genetic algorithm is fully understood. Then, the matlab genetic algorithm box is used to optimize the target function. The optimal value of the objective function and the corresponding optimum parameter value are obtained. The virtual prototype model of the shuttle car is established by comparing the structure parameters of the steering mechanism before and after the optimization. According to the organization size provided by the principal unit, the shuttle car model before the optimization is created by using the ugnx7.0 software, and the.3. is optimized according to the genetic algorithm. The optimized shuttle car model is created to the parameters of the mechanism. Then the created UG model files are introduced into the ADAMS software, and the quality is applied in the model, the wheels, the pavement and the movement constraints, contact and so on are added. The virtual prototyping of the optimized and optimized shuttle car is created by the virtual prototype model.4. of the optimized and optimized shuttle car. The simulation and result analysis are carried out in the model. First, in ADAMS, the resistance moment curves under the original and optimized turning state of the shuttle car are obtained by the original and optimized steering simulation, and the simulation values of the steering resistance moment are compared with the calculated values. Then, the steering simulation is obtained through the motion state. The simulation curves of the turning radius and the resistance moment of the shuttle vehicle before and after the optimization are simulated, and the results of the results before and after the optimization are compared and analyzed by.5.. The finite element analysis is made on the stress and deformation of the cross rod in the steering mechanism of the shuttle vehicle before and after the optimization, because the cross rod is passed in the steering mechanism. The finite element analysis of the stress and deformation of the horizontal rod before and after the optimization is carried out, and the maximum stress and maximum deformation of the horizontal bar are analyzed and compared. The high efficient optimization design method of the genetic algorithm is used in this project, and the UG modeling software and the ADAMS simulation are combined. The analysis software is used to optimize the resistance moment and turning radius of the shuttle steering, which makes the shuttle car have smaller turning radius and steering resistance moment, thus improving the maneuverability and maneuverability of the shuttle. The efficient optimization method and the use of modeling and simulation software make up for the high cost and the long period of the traditional optimization design. It also provides a new method and direction for the optimization of turning radius and steering resistance moment of steering mechanism.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD525
【參考文獻】
相關(guān)期刊論文 前10條
1 郭年琴;吳永興;鄭浩龍;袁康;;基于遺傳算法梭車優(yōu)化設(shè)計[J];煤礦機械;2015年01期
2 張輝;黃偉;;基于Matlab的轉(zhuǎn)向梯形機構(gòu)優(yōu)化設(shè)計[J];科協(xié)論壇(下半月);2013年12期
3 史向坤;王健;;遺傳算法在機械優(yōu)化設(shè)計中的應用價值分析[J];科技風;2012年08期
4 王勇;;基于Matlable語言的梯形轉(zhuǎn)向機構(gòu)優(yōu)化[J];起重運輸機械;2011年08期
5 王濤;;轉(zhuǎn)向四連桿機構(gòu)的集成優(yōu)化設(shè)計[J];拖拉機與農(nóng)用運輸車;2009年02期
6 薄瑞峰;李瑞琴;劉昕明;;輪式車輛轉(zhuǎn)向機構(gòu)的遺傳算法優(yōu)化設(shè)計[J];中北大學學報(自然科學版);2009年02期
7 俞國燕;王筱珍;;改進遺傳算法的應用研究[J];機械制造;2007年05期
8 孫奇涵;董恩國;張蕾;高淑睿;;轉(zhuǎn)向四連桿機構(gòu)的參數(shù)分析及優(yōu)化設(shè)計[J];遼寧工程技術(shù)大學學報;2007年02期
9 徐小龍,王文國;遺傳算法的原理與應用[J];沿海企業(yè)與科技;2005年05期
10 李華昌,謝淑蘭,易忠勝;遺傳算法的原理與應用[J];礦冶;2005年01期
相關(guān)碩士學位論文 前6條
1 師東波;WC5型自卸式車輛轉(zhuǎn)向系統(tǒng)的優(yōu)化設(shè)計[D];太原理工大學;2016年
2 李琳娜;礦用鏟運機全液壓轉(zhuǎn)向系統(tǒng)機液聯(lián)合仿真及優(yōu)化設(shè)計[D];太原理工大學;2016年
3 邢哲;煤礦井下整體式無軌膠輪車轉(zhuǎn)向機構(gòu)運動研究[D];武漢理工大學;2013年
4 王鎮(zhèn)乾;梭車轉(zhuǎn)向四連桿機構(gòu)的分析與優(yōu)化設(shè)計[D];太原理工大學;2012年
5 符亮;汽車轉(zhuǎn)向機構(gòu)的特性研究[D];重慶理工大學;2012年
6 張永輝;汽車電動助力轉(zhuǎn)向系統(tǒng)特性仿真研究[D];長安大學;2009年
,本文編號:2088059
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2088059.html