科爾沁沙地固沙植被高光譜特性及葉片含水率反演研究
本文選題:沙丘植被 + 光譜特性; 參考:《內(nèi)蒙古農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:地物光譜特征的測量和研究不僅是各種遙感應(yīng)用分析的基礎(chǔ),同時也為遙感理論研究的重要內(nèi)容。由于實測地面光譜數(shù)據(jù)的光譜分辨率較高,因此,它能夠準(zhǔn)確反映目標(biāo)地物的光譜信息。本文采用Field Spec4(ASD)便攜式光譜儀對科爾沁5種沙丘植被(麻黃、冷蒿、黃柳、差巴嘎蒿和小葉錦雞兒)進行了高光譜測定,并對其特征進行提取分析,研究了它們不同生長時期和不同覆蓋度下差巴嘎蒿的光譜特性,為今后該區(qū)域植被特性的反演和光譜數(shù)據(jù)庫的建立提供數(shù)據(jù)支持,同時對小葉錦雞兒葉片含水率建立了高光譜反演模型,為進一步探索高分辨率衛(wèi)星遙感數(shù)據(jù)在固沙植被葉片含水率反演方面的方法和應(yīng)用提供依據(jù)。主要成果如下:1.5種典型沙丘植被的光譜形態(tài)大致相同,但又略有差異。在600-690nm與750-900nm波段處差異較大,根據(jù)光譜差異波段和導(dǎo)數(shù)光譜參數(shù)可以區(qū)分冷蒿、麻黃和差巴嘎蒿,但不能區(qū)分黃柳和小葉錦雞兒。2.隨植被生長期的推移,5種沙丘植被的"綠峰"位置經(jīng)歷了先向藍光方向偏移而后又向紅光方向偏移的過程,黃柳、冷蒿、麻黃和小葉錦雞兒4種沙丘植被光譜對應(yīng)的"紅邊"均具有明顯的"雙峰",而差巴嘎蒿光譜"紅邊"區(qū)的"雙峰"現(xiàn)象并不十分的明顯;麻黃、黃柳和小葉錦雞兒光譜的"紅邊"區(qū)(同其他植被相同)出現(xiàn)較為明顯的"紅移"現(xiàn)象,黃柳和冷蒿的"紅邊"區(qū)在9月末出現(xiàn)"藍移"現(xiàn)象,而冷蒿和差巴嘎蒿的"紅邊位置"呈微弱減少態(tài)勢,"紅移"現(xiàn)象并未出現(xiàn)。5種典型沙丘植被在8、9月份均具有"紅邊平臺",其中差巴嘎蒿和小葉錦雞兒在9月27日均持續(xù)處在"紅邊平臺"位置。3.5種典型沙丘植被在紅光波段處的吸收明顯比藍光波段處強烈,吸收深度也比藍光波段處深。隨植被生長推移,5種沙丘植被的吸收深度、吸收面積和NDVI變化趨勢相同。不同生長時期的"紅邊"、"吸收"參數(shù)和時序NDVI數(shù)據(jù)識別植被的效果明顯好于其他參數(shù)。研究區(qū)進行植被分類時,應(yīng)選擇春季和秋季中晚期的多時相遙感影像,進行聯(lián)合解譯會取得更好的效果。4.分析不同覆蓋度下差巴嘎蒿的光譜特性,當(dāng)覆蓋度大于40%時,"紅邊位置"與覆蓋度并無直接聯(lián)系,但"紅邊斜率"與覆蓋度呈正比。其吸收深度隨覆蓋度的增加而增大,吸收峰面積隨覆蓋度的增加而減小,對覆蓋度敏感性參數(shù)比較可知,研究該地區(qū)差巴嘎蒿覆蓋度變化優(yōu)先考慮吸收峰面積。5.對采集的113組小葉錦雞兒葉片高光譜反射率進行小波變換,并構(gòu)建基于"小波植被指數(shù)"反演小葉錦雞兒葉片含水率的線性模型,將所得結(jié)論與構(gòu)建的光譜植被指數(shù)反演模型進行比較,進而得出結(jié)果:基于6個小波植被指數(shù)構(gòu)建反演葉片RMC的多元線性模型RMCw和采用3個光譜植被指數(shù)建立的多元線性模型的R2分別為0.72、0.46,檢驗精度R2分別為 0.88、0.57。
[Abstract]:The measurement and study of the spectral characteristics of ground objects is not only the basis for the analysis of various remote sensing applications, but also an important part of the theoretical study of remote sensing. Because of the high spectral resolution of the measured ground spectral data, it can accurately reflect the spectral information of the target ground object. In this paper, five kinds of sand dune vegetation (Ephedra ephedra, Artemisia chrysanthemi, Salix willow, Artemisia japonica and Caragana microphylla) were determined by Field Spec4ASD portable spectrometer, and their characteristics were extracted and analyzed. The spectral characteristics of Artemisia variegata in different growth periods and different coverage were studied, which provided data support for the inversion of vegetation characteristics and the establishment of spectral database in the region in the future. At the same time, the hyperspectral inversion model of leaf moisture content of Caragana microphylla is established, which provides the basis for further exploring the method and application of high resolution satellite remote sensing data in the retrieval of leaf moisture content of sand fixation vegetation. The main results are as follows: 1. 5 typical dune vegetation has the same spectral form, but slightly different. There is a great difference between 600-690nm and 750-900nm bands. According to the spectral difference band and derivative spectral parameters, Artemisia chrysanthemi, Ephedra ephedra and Artemisia charantia can be distinguished, but they can not be distinguished from Caragana microphylla. With the development of vegetation, the "green peak" position of 5 kinds of dune vegetation experienced the process of first shifting to blue light and then moving to red light, yellow willow, Artemisia frigida, The "red edges" of Ephedra equisetifolia and Caragana microphylla have obvious "double peaks", but the "double peaks" in the "red edge" region of the spectrum of Artemisia ephedra are not very obvious. The "red edge" region of the spectrum of willow and Caragana microphylla (similar to other vegetation) showed a more obvious "red shift" phenomenon, and the "red edge" region of Salix willow and Artemisia frigida showed "blue shift" at the end of September. However, the "red edge position" of Artemisia chrysanthemi and Artemisia japonica decreased slightly, and the "red shift" phenomenon did not show that there were 5 typical dune vegetation with "red edge platform" in August and September, in which Artemisia chrysanthemi and Caragana microphylla had a "red edge platform" on September 27. The absorption of 3.5 typical dune vegetation in red light band was significantly stronger than that in blue light band. The absorption depth is also deeper than the blue band. With the growth of vegetation, the absorption depth, absorption area and NDVI change trend of 5 kinds of dune vegetation are the same. The effect of "absorption" parameter and time series NDVI data in identifying vegetation is better than that of other parameters. In the classification of vegetation in the study area, the multitemporal remote sensing images in the middle and late spring and autumn should be selected, and the combined interpretation will achieve better results. The spectral characteristics of Artemisia variabilis under different coverage were analyzed. When the coverage is greater than 40, the "red edge position" is not directly related to the coverage, but the "red edge slope" is proportional to the coverage. The absorption depth increases with the increase of coverage, and the absorption peak area decreases with the increase of coverage. The hyperspectral reflectance of 113 groups of Caragana microphylla leaves was analyzed by wavelet transform, and a linear model based on "wavelet vegetation index" for retrieving water content of Caragana microphylla leaves was constructed. The conclusions are compared with the constructed spectral vegetation index inversion model. The results are as follows: the multiple linear model (RMCw) based on six wavelet vegetation indices and the multivariate linear model (R2) based on three spectral vegetation indices are 0.72 ~ 0.46 and 0.880.57, respectively.
【學(xué)位授予單位】:內(nèi)蒙古農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:Q948
【參考文獻】
相關(guān)期刊論文 前10條
1 郝芳芳;陳艷梅;高吉喜;呂國旭;田美榮;;河北壩上地區(qū)草地退化指示種的高光譜特征波段識別[J];生態(tài)與農(nóng)村環(huán)境學(xué)報;2016年06期
2 童慶禧;張兵;張立福;;中國高光譜遙感的前沿進展[J];遙感學(xué)報;2016年05期
3 李真真;鄭翔;牛德奎;郭曉敏;謝碧裕;張學(xué)玲;;武功山山地草甸主要群落類型高光譜特征[J];草業(yè)科學(xué);2016年08期
4 毛新安;夏小偉;安沙舟;;基于高光譜遙感的荒漠草地圍欄封育監(jiān)測[J];草食家畜;2016年03期
5 徐旭;陳國慶;王良;葉桂香;王振林;李勇;;基于敏感光譜波段圖像特征的冬小麥LAI和地上部生物量監(jiān)測[J];農(nóng)業(yè)工程學(xué)報;2015年22期
6 劉美;吳世新;潘伯榮;;沙冬青(Ammopiptanthus Cheng f.)高光譜特征提取和分析[J];干旱區(qū)研究;2015年06期
7 孫少波;杜華強;李平衡;周國模;徐小軍;高國龍;李雪建;;基于小波變換的毛竹葉片凈光合速率高光譜遙感反演[J];應(yīng)用生態(tài)學(xué)報;2016年01期
8 馬維維;鞏彩蘭;胡勇;魏永林;李龍;劉豐軼;孟鵬;;牧草品質(zhì)的高光譜遙感監(jiān)測模型研究[J];光譜學(xué)與光譜分析;2015年10期
9 蔣金豹;何汝艷;STEVEND Michael;;基于連續(xù)小波變換的地下儲存CO_2泄漏高光譜遙感監(jiān)測[J];煤炭學(xué)報;2015年09期
10 劉吉凱;鐘仕全;梁文海;;基于多時相Landsat8 OLI影像的作物種植結(jié)構(gòu)提取[J];遙感技術(shù)與應(yīng)用;2015年04期
相關(guān)博士學(xué)位論文 前2條
1 李向陽;煙草高光譜特性與農(nóng)藝、生理、品質(zhì)指標(biāo)關(guān)系和估測模型研究[D];河南農(nóng)業(yè)大學(xué);2007年
2 劉順喜;高光譜遙感土地利用信息提取技術(shù)研究[D];北京林業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前7條
1 林海軍;塔里木河下游主要荒漠植物高光譜特征分析[D];新疆農(nóng)業(yè)大學(xué);2013年
2 苗茜;基于小波變換的蘆葦葉綠素含量的地物高光譜反演研究[D];首都師范大學(xué);2013年
3 王志輝;高光譜遙感在森林樹種識別中的應(yīng)用[D];浙江農(nóng)林大學(xué);2011年
4 趙釗;新疆荒漠植物含水率高光譜特征分析[D];新疆農(nóng)業(yè)大學(xué);2011年
5 鄭長春;水稻種植面積遙感信息提取研究[D];新疆農(nóng)業(yè)大學(xué);2008年
6 郝建亭;光譜數(shù)據(jù)處理及其在植被信息提取中的應(yīng)用[D];成都理工大學(xué);2008年
7 謝秋昌;基于高光譜數(shù)據(jù)的分類技術(shù)研究[D];長安大學(xué);2008年
,本文編號:1980330
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1980330.html