基于電沉積法制備鎳納米網(wǎng)狀結(jié)構(gòu)薄膜材料的研究
發(fā)布時間:2018-05-16 15:30
本文選題:電沉積 + 鎳 ; 參考:《上海交通大學(xué)》2010年碩士論文
【摘要】: 納米材料由于其尺寸的原因具備許多大塊固體所不具備的特性。近年來,在催化、活化、傳感、表面增強散射等領(lǐng)域有著巨大的應(yīng)用前景。其中,納米網(wǎng)狀薄膜材料由于其具有特殊的網(wǎng)狀結(jié)構(gòu)、極大的表面積,因此具有較高的電催化活性、憎水等特性,在催化和分離科學(xué)、憎水性涂料等領(lǐng)域上具有重要的應(yīng)用,因而對該種材料的探索和研究極具意義。 目前,納米材料的制備方法有許多,其中,電化學(xué)方法仍處于起步階段。因此,就一些新的簡捷、有效制備方法的探索,對于開展相關(guān)的基礎(chǔ)和應(yīng)用研究仍具有重要的意義。在制備納米材料的各種方法中,電沉積法具有如下優(yōu)點: (1)可制備多種單金屬或合金材料,應(yīng)用范圍廣; (2)設(shè)備簡單,成本低;(3)需克服的技術(shù)障礙少; (4)不受零件尺寸形狀限制等。 本文基于電沉積的方法,研究制備一種新型的鎳納米網(wǎng)狀薄膜結(jié)構(gòu)材料,設(shè)備方法簡易,成本低廉,有望得到廣泛的應(yīng)用。通過對電沉積制備工藝的探索、納米網(wǎng)狀結(jié)構(gòu)晶體生長機理的研究及鎳納米網(wǎng)狀結(jié)構(gòu)薄膜材料表面潤濕行為的研究,可以獲得如下結(jié)論: 1、通過調(diào)整電沉積鍍液的成分(主鹽和添加劑)、沉積工藝參數(shù),能夠穩(wěn)定地獲得鎳納米網(wǎng)狀結(jié)構(gòu)薄膜材料:添加劑乙胺鹽酸鹽的加入,可以使得表面微觀結(jié)構(gòu)從平整的鎳層變?yōu)榧{米網(wǎng)狀結(jié)構(gòu);該種結(jié)構(gòu)在氯化鎳作為主鹽的溶液中能夠獲得,而在氨基磺酸鎳作為主鹽的鍍液中電沉積只能得到圓胞狀突起結(jié)構(gòu);對各種電沉積條件的研究表明,小范圍內(nèi)的溫度變化對納米網(wǎng)結(jié)構(gòu)的尺寸影響不大,在40~50℃間是形成納米網(wǎng)結(jié)構(gòu)的適宜溫度區(qū)間;在較高的電流密度下(5 A/dm2)才能得到均勻分布的納米網(wǎng)結(jié)構(gòu);隨著沉積時間的延長,表面結(jié)構(gòu)并沒有太大變化。 2、斷面結(jié)構(gòu)觀察證實,該種鎳納米網(wǎng)狀結(jié)構(gòu)薄膜層中存在一定孔隙,具有一定的空間架構(gòu)結(jié)構(gòu),通過XRD能譜分析及晶粒尺寸計算,發(fā)現(xiàn)在不同沉積時間下得到的晶粒尺寸基本一致,對比SEM照片中讀圖計算轉(zhuǎn)換得到的半徑值同XRD擬合得到的半徑值,發(fā)現(xiàn)兩者數(shù)值較為接近。因此推斷每一個枝狀結(jié)構(gòu)代表一個晶粒,而該薄膜為多晶沉積層。 3、采用脈沖電鍍的方式能得到較直流體系下結(jié)構(gòu)更為粗大穩(wěn)定的微納米網(wǎng)結(jié)構(gòu)。并且在脈沖電流方式下,選用較小的脈沖電流密度就能獲得均勻的微納米結(jié)構(gòu),提高了電流效率;脈沖頻率對沉積層形貌的影響不是很大,在頻率分別為1,10和100的條件下,得到相近的表面形貌;脈沖占空比的改變對沉積層形貌由顯著影響,隨著占空比的減小,SEM觀察到的枝狀結(jié)構(gòu)不斷增大,并且XRD計算得到的晶粒尺寸也不斷增大。 4、表面潤濕性能測試結(jié)果表明具有枝狀納米網(wǎng)結(jié)構(gòu)的表面較平滑的鎳沉積層表面以及胞狀突起狀表面潤濕角有較大的提高,其數(shù)值可達到130~140°,個別已接近超疏水性。對于同樣具有枝狀納米網(wǎng)結(jié)構(gòu)的表面,隨著枝狀結(jié)構(gòu)的粗大,潤濕角數(shù)值呈現(xiàn)上升趨勢;分析脈沖導(dǎo)通時間及晶粒尺寸同潤濕角之間的關(guān)系,我們可以發(fā)現(xiàn),隨著脈沖導(dǎo)通時間的延長,晶粒尺寸不斷增大,相應(yīng)的潤濕角也呈現(xiàn)一個增大的過程。
[Abstract]:Nanomaterials have many potential applications in the fields of catalysis, activation, sensing, and surface enhanced scattering because of their size. In recent years, nanoscale thin film materials have high electrocatalytic activity because of their special network structure and large surface area. Water and other properties have important applications in the fields of catalysis and separation science, hydrophobic coatings and so on. Therefore, the exploration and research of this material is of great significance.
At present, there are many preparation methods of nanomaterials, among them, electrochemical methods are still in the initial stage. Therefore, the exploration of some new simple and effective preparation methods is still of great significance for the development of relevant basic and applied research. In the various methods of preparing nanomaterials, electrodeposition has the following advantages: (1) more preparation can be made. A single metal or alloy material is widely used. (2) the equipment is simple and the cost is low; (3) the technical barriers to overcome are few; (4) it is not restricted by the size and shape of parts.
Based on the electrodeposition method, a new type of nickel nano mesh thin film structure material is prepared. The equipment is simple and low cost. It is expected to be widely used. Through the exploration of the preparation process of electrodeposition, the study of the crystal growth mechanism of the nanoscale network structure and the research of the wetting behavior of the surface of the Ni nanoscale reticulated structure film material The following conclusions can be obtained:
1, by adjusting the composition of the electrodeposition plating bath (main salt and additive) and the deposition process parameters, the nickel nano mesh structure film material can be obtained stably. The addition of the additive ethylamine hydrochloride can make the surface microstructure change from the flat nickel layer to the nanoscale network structure, which can be obtained in the solution of the nickel chloride as the main salt solution. The electrodeposition of nickel ammonium sulfonate as the main salt bath can only obtain a cycic protuberance structure. The study of various electrodeposition conditions shows that the temperature change within a small range has little effect on the size of nanoscale structure, and is a suitable temperature range for the formation of nanoscale structure at 40~50 C; at a high current density (5 A/dm2) The uniform distribution of nanostructures can be obtained. With the prolongation of deposition time, the surface structure does not change much.
2, the observation of the section structure confirms that there is a certain pore in the Ni nanoscale mesh layer, and has a certain spatial structure. Through the XRD spectrum analysis and the grain size calculation, it is found that the grain size obtained at different deposition time is basically the same. The radius values obtained by comparing the calculation of the calculation of the reading map in the SEM photograph are fitted to the XRD. The value of the radius is closer to each other, so it is deduced that each dendrite structure represents a grain, which is a polycrystalline deposit.
3, the micro nanoscale structure with more coarse and stable structure in the DC system can be obtained by pulse electroplating. Under the pulse current mode, a uniform micro nano structure can be obtained by using the smaller pulse current density, and the current efficiency is improved. The influence of the pulse frequency on the morphology of the deposition layer is not very large, and the frequency is 1,10, respectively. Under the condition of 100 and 100, the similar surface morphology is obtained, and the change of the pulse duty ratio has a significant influence on the morphology of the deposition layer. With the decrease of the duty ratio, the dendritic structure observed by SEM increases continuously, and the grain size obtained by the XRD calculation is also increasing.
4, the surface wettability test results show that the surface of the smooth nickel deposition layer and the surface wetting angle of the cell like surface have a great improvement, and the numerical value can reach 130~140 degrees, which is close to the superhydrophobicity. For the surface of the branch like structure, the surface of the branch like structure is wetted. With the analysis of the relationship between the time of pulse conduction and the wetting angle of the grain size, we can find that the grain size increases with the prolongation of the pulse conduction time, and the corresponding wetting angle also presents an increase process.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2010
【分類號】:TB383.2
【相似文獻】
相關(guān)期刊論文 前10條
1 ;納米植物炭黑[J];新型炭材料;2011年03期
2 ;納米植物炭黑[J];新型炭材料;2011年04期
3 隋巖峰;李伯剛;李子燕;解田;楊麗萍;;復(fù)分解法制備納米羥基磷灰石的實驗研究[J];硫磷設(shè)計與粉體工程;2011年04期
4 ;2011中國(北京)國際新材料產(chǎn)業(yè)博覽會[J];陶瓷;2011年08期
5 鄧玉明;毛勇;;納米TiO_2抗菌劑的改性及在抗菌塑料中的應(yīng)用研究[J];塑料制造;2011年06期
6 秦洋;曹漢中;;TiO_2/SiO_2自清潔光催化薄膜的制備與性能研究[J];廣州化工;2011年12期
7 ;納米鋁的應(yīng)用及其制備方法研究進展[J];鋁加工;2011年03期
8 陳操;翟文濤;鄭文革;盧叮叮;汪t,
本文編號:1897425
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/1897425.html
最近更新
教材專著