天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 社科論文 > 法治論文 >

流延法制備固體氧化物燃料電池關鍵材料研究

發(fā)布時間:2018-04-20 07:32

  本文選題:燃料電池 + 流延。 參考:《中國科學技術(shù)大學》2010年博士論文


【摘要】: 固體氧化物燃料電池(Solid Oxide Fuel Cells, SOFCs)是一種新型的能源利用技術(shù),它具有能量轉(zhuǎn)化效率高、對環(huán)境污染小、燃料適應性強等優(yōu)點,自它誕生就吸引了世界各國和大型企業(yè)廣泛的關注與研究。SOFC的發(fā)電效率在所有燃料電池中是最高,比內(nèi)燃機的效率高出兩倍;同時固體氧化物燃料電池的燃料適用性廣泛,H2,CO,CH4等都可以在SOFC中直接使用。經(jīng)過二十年的快速發(fā)展,固體氧化物燃料電池技術(shù)已開始走向市場化和產(chǎn)業(yè)化。為了降低成本和提高效率,當前固體氧化物燃料電池技術(shù)的一個重要課題是使電解質(zhì)薄膜化以實現(xiàn)電池的中低溫操作。而制備低成本、大面積以陽極支撐薄膜化的電解質(zhì)是實現(xiàn)中低溫SOFC的一個重要關鍵環(huán)節(jié)。 本論文探索了用流延法制備性能良好的SOFC陽極和致密電解質(zhì)工藝,并通過噴霧流延以及雙層流延的方法制備梯度陽極以滿足磁控濺射制備電解質(zhì)對陽極表面的要求。同時論文還利用雙層流延的方法制備復合陽極和電解質(zhì)技術(shù)的探討研究。論文還對雙層流延法制備質(zhì)子導體電解質(zhì)和陰極支撐SOFC進行了研究。 論文第一章概述了SOFC的工作原理,各關鍵材料(電解質(zhì)、陰極、陽極、連接材料)的性能要求,以及SOFC技術(shù)研究、發(fā)展的現(xiàn)狀和趨勢。最后給出了本論文的主要研究目標。 第二章研究了流延法制備固體氧化物燃料電池陽極技術(shù)。分析了漿料中各種有機添加劑以及燒結(jié)工藝對陽極燒結(jié)體性能的影響;并通過研究確定了流延法制備陽極支撐體的工藝參數(shù),所獲得的陽極燒結(jié)體表面孔隙率控制均勻,沒有大于10μm的孔洞,能夠滿足磁控濺射YSZ電解質(zhì)薄膜的要求。 第三章研究了陽極微結(jié)構(gòu)的優(yōu)化和梯度陽極的制備技術(shù)。實驗表明不同的造孔劑對陽極孔結(jié)構(gòu)有很大影響。使用球形石墨造孔可以得到微結(jié)構(gòu)良好的陽極襯底。同時,論文研究了使用雙層流延和噴霧流延的方法制備陽極功能層-陽極支撐體雙層結(jié)構(gòu)的梯度陽極技術(shù)。利用噴霧流延法可以制備出具有功能層結(jié)構(gòu),性能良好的梯度陽極。 第四章研究了雙層流延法制備電解質(zhì)-陽極半電池技術(shù),分析YSZ電解質(zhì)漿料成分對電解質(zhì)薄膜形貌影響,運用電子掃描顯微鏡和電池性能分析電解質(zhì)的致密度和電池結(jié)構(gòu)的好壞。實驗表明通過優(yōu)化電解質(zhì)漿料和流延工藝,可以得到厚度在10μm左右的致密YSZ電解質(zhì)薄膜。SOFC單電池的制備技術(shù)可以通過兩種工藝途徑實現(xiàn),電池陽極由流延法制備,電解質(zhì)分別由流延和磁控濺射制備,絲網(wǎng)印刷制備陰極。兩種方法制備的電解質(zhì)厚度都能夠控制在10μm左右。電池功率密度最大可以達到600mw/cm2以上。 第五章研究了使用雙層流延法制備高溫陶瓷質(zhì)子導體電解質(zhì)薄膜技術(shù),我們采用流延結(jié)合原位反應的方法一步制備陽極-電解質(zhì)半電池,簡化了工藝,避開了粉料成相的步驟。制備出了BCZYZ-NiO/BCZYZ半電池,以La0.7Sr0.3FeO3-δ為陰極。電池的性能為:開路電壓在550℃,600℃,650℃,和700℃分別為1.03V1.02V, 1.01V,1.00V;功率密度在550℃,600℃,650℃,和700℃的功率密度分別為56 mW cm-2,175 mW cm-2,250 mW cm-2,275 mW cm-2。 第六章研究了雙層流延制備陰極支撐SOFC技術(shù)。通過雙層流延法制備出陰極支撐電解質(zhì)薄膜生坯。陰極支撐SOFC在不同溫度下燒結(jié),在1400℃燒結(jié)式可以獲得致密SDC電解質(zhì),同時又避免了電解質(zhì)和陰極之間的反應,獲得了純相的陰極支撐體和電解質(zhì)。通過對單電池的電池性能和電化學性能進行評價。電池的在600℃,650℃,700℃,750℃,800℃開路電壓和電池性能分別為0.72V,0.69V,0.65V,0.61V,0.55V和55mW/cm2,105 mW/cm2,164 mW/cm2,233mW/cm2,245mW/cm2。 第七章研究了使用凝膠注模的方法制備管狀SOFC技術(shù),通過凝膠注模的方法獲得了管徑為0.56cm,長度為3cm的單電池。所制備的單電池結(jié)構(gòu)為多孔陽極支撐體和致密電解質(zhì),單電池在700℃,750℃,800℃的開路電壓達到1 V,0.99V0.96V,最大功率密度為126mW/cm2,154mW/cm2,155mW/cm2。
[Abstract]:Solid oxide fuel cell (Solid Oxide Fuel Cells, SOFCs) is a new energy utilization technology. It has the advantages of high energy conversion efficiency, small environmental pollution and strong fuel adaptability. Since its birth, it attracts all countries and large enterprises in the world to pay more attention to and study the efficiency of.SOFC power generation in all fuel cells. High efficiency is two times higher than that of an internal combustion engine; at the same time, the fuel cell of solid oxide fuel cell is widely used, H2, CO, CH4 and so on can be used directly in SOFC. After twenty years of rapid development, solid oxide fuel cell technology has begun to be marketed and industrialized. In order to reduce the cost and improve the efficiency, the current solid oxide An important issue in fuel cell technology is to film the electrolyte to realize the medium and low temperature operation of the battery, and the preparation of low cost, large area anode supported thin film electrolyte is an important key link for the realization of low temperature SOFC.
In this paper, we have explored the preparation of good SOFC anode and compact electrolyte by the method of casting, and the preparation of the gradient anode by spray casting and double layer casting to meet the requirements of the anode surface for the preparation of electrolytes by magnetron sputtering. We also studied the preparation of proton conducting electrolyte and cathode supported SOFC by double-layer tape casting.
The first chapter of the paper outlines the working principle of SOFC, the performance requirements of key materials (electrolyte, cathode, anode, connecting material), and the current status and trend of the research on SOFC technology. Finally, the main research objectives of this paper are given.
In the second chapter, the anode technology for the preparation of solid oxide fuel cells was studied. The effects of various organic additives in the slurry and the sintering process on the performance of anodic sintered bodies were analyzed. The process parameters of the anode support prepared by the casting process were determined. The surface porosity of the anode sintered body was controlled even. The holes larger than 10 m can meet the requirements of YSZ electrolyte thin films deposited by magnetron sputtering.
The third chapter studies the optimization of the anode microstructures and the preparation of the gradient anode. The experiment shows that different pore forming agents have a great influence on the structure of the anode hole. The microstructures of the anode substrate can be obtained by using the spherical graphite hole. At the same time, the anode functional layer anodic branch is prepared by the method of double-layer casting and spray casting. The gradient anode technology of double layer structure is adopted. The gradient anode with good functional layer structure and good performance can be prepared by spray casting method.
The fourth chapter studies the preparation of electrolyte anodic half battery by double layer casting. The influence of the composition of YSZ electrolyte on the morphology of electrolyte film is analyzed. The density of electrolyte and the structure of the battery are analyzed by the electron scanning microscope and battery performance. The experiment shows that the thickness of the electrolyte and the casting process can be obtained by optimizing the electrolyte size and the casting process. The preparation technology of compact YSZ electrolyte thin film.SOFC single cell at about 10 m can be prepared by two processes. The anode of the battery is prepared by the flow casting method, the electrolyte is prepared by the casting and the screen printing to prepare the cathode. The electrolyte thickness of the two methods can be controlled at about 10 m. The power density of the battery is the largest. It can reach more than 600MW / cm2.
The fifth chapter studies the preparation of high temperature ceramic proton conductor electrolyte membrane by double layer casting. We use the method of casting in situ reaction to prepare the anode electrolyte half battery. The process is simplified and the phase of the powder is avoided. The BCZYZ-NiO / BCZYZ half battery is prepared, and the battery is La0.7Sr0.3FeO3- Delta as the cathode. Performance: open circuit voltage at 550, 600, 650, and 700, respectively 1.03V1.02V, 1.01V, 1.00V; power density at 550, 600, 650, and 700, respectively, is 56 mW cm-2175 mW cm-2250 mW cm-2275 mW cm-2.
The sixth chapter studies the preparation of cathode support SOFC with double layer casting. The cathode support electrolyte film billet is prepared by double layer casting. The cathode support SOFC is sintered at different temperatures. The compact SDC electrolyte can be obtained at 1400 C, and the reaction between the electrolyte and the cathode is avoided. The cathode support of the pure phase is obtained. And electrolytes. By evaluating the performance and electrochemical performance of the single cell battery, the open circuit voltage and battery performance at 600, 650, 700, 750, 800, respectively, are 0.72V, 0.69V, 0.65V, 0.61V, 0.55V and 55mW / cm2105 mW / cm2164 mW / cm2233mW / cm2245mW / cm2245mW.
In the seventh chapter, the tubular SOFC technology is prepared by gel casting. The single cell with a diameter of 0.56cm and a length of 3cm is obtained by gel casting. The single cell structure is porous anode support and compact electrolyte, and the open circuit voltage of the single cell is 1 V, 0.99V0.96V, and maximum power density at 700, 750 and 800. The degree is 126mW / cm2154mW / cm2155mW / cm2.

【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2010
【分類號】:TM911.4

【共引文獻】

相關期刊論文 前10條

1 金從進,汪鉞強,李澤亞,朱立新;固體電解質(zhì)脫氧技術(shù)的發(fā)展[J];寶鋼技術(shù);2001年02期

2 王金艷,王永鈐,李立本;釔穩(wěn)定的二氧化鋯(YSZ)的結(jié)構(gòu)及離子導電性[J];寶雞文理學院學報(自然科學版);2001年02期

3 劉建玲,賴瓊琳,陳宗璋,何莉萍,楊天足,江名喜;反應條件對水熱法制備納米ATO粉體形貌和電性能的影響[J];材料科學與工程學報;2005年04期

4 任仁;淺談固體電解質(zhì)及其應用──兼議如何正確定義電解質(zhì)[J];大學化學;1995年03期

5 劉建玲,賴瓊琳,陳宗璋,何莉萍,楊天足,江名喜;制備工藝對納米級銦錫氧化物(ITO)形貌和電性能的影響[J];功能材料;2005年04期

6 鐘鳳蘭,鄭偉濤,張瑞林;α-AgI的價電子結(jié)構(gòu)分析[J];吉林大學學報(理學版);1993年02期

7 蘇f ,謝斌,秦曉英,吳?;納米離子導體Ca_(1-x)La_xF_(2+x)的復阻抗譜和介電常數(shù)[J];科學通報;1994年19期

8 楊如璽,唐多強,張濤華,金富林,,陳榮金;三元玻璃的復離子效應[J];天津大學學報;1996年03期

9 朱斌,俞文海;蒙脫石固體電解質(zhì)的電性能研究[J];無機材料學報;1988年03期

10 丁屹,俞文海;天然絲光沸石對無機鹽的復合研究[J];無機材料學報;1991年03期

相關碩士學位論文 前9條

1 楊濤;鉭電解電容器用新型聚合物電極材料[D];電子科技大學;2003年

2 劉曉寧;管式固體電解質(zhì)CO_2氣體傳感器的研究[D];吉林大學;2004年

3 楊亞杰;有機固體鉭電解電容器陰極材料及器件特性研究[D];電子科技大學;2004年

4 王海飛;鋰離子電池非晶態(tài)電解質(zhì)研究中的物理問題[D];河北工業(yè)大學;2005年

5 王貴;ZrO_2-Y_2O_3-MgO三元系氣敏材料的制備和相關性能的研究[D];山東大學;2006年

6 張志娟;摻雜過渡金屬氧化物的CeO_2基固體電解質(zhì)的制備與性能研究[D];貴州大學;2007年

7 張軍;固體氧化物燃料電池CuCoNi/SDC陽極的制備及表征[D];內(nèi)蒙古科技大學;2007年

8 秦利平;溶劑熱法制備ITO(銦錫復合氧化物)納米粉體及其性能研究[D];中南大學;2007年

9 周賢界;固體氧化物燃料電池電解質(zhì)材料的研究[D];桂林電子科技大學;2007年



本文編號:1776834

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/1776834.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1bd82***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com