互穿聚合物網(wǎng)絡炭化法制備孔結(jié)構(gòu)可控碳材料及電容性能研究
發(fā)布時間:2018-04-19 04:18
本文選題:互穿聚合物網(wǎng)絡 + 有效比表面積。 參考:《蘭州理工大學》2017年碩士論文
【摘要】:本文綜述了超級電容器最新研究進展,重點對超級電容器碳材料的制備和結(jié)構(gòu)調(diào)控技術(shù)發(fā)展現(xiàn)狀進行了綜述。對于雙電層電容器來說,系統(tǒng)研究碳材料的孔隙率和孔徑分布與超級電容性能關(guān)系,是一個非常重要的基礎科學問題。遺憾的是對于這一問題基本都止步于定性的說明或解釋,沒有有力的實驗驗證。這一方面是因為體系的復雜性,另一方面是由于碳材料結(jié)構(gòu)的不可控性。據(jù)此,本課題提出了互穿聚合物網(wǎng)絡碳化法制備孔徑結(jié)構(gòu)精確可控的碳電極材料的新方法。本研究課題的實施遵循聚合物聚合可控-碳材料結(jié)構(gòu)可控-高性能超級電容器碳電極材料為主線的研究路線,即通過控制互穿聚合物網(wǎng)絡中兩聚合物的相對含量來調(diào)控互穿聚合物網(wǎng)絡的形態(tài)結(jié)構(gòu),進而調(diào)控碳材料的孔徑結(jié)構(gòu)。主要內(nèi)容如下:(1)擁有可控孔徑和有效比表面積的分級多孔碳的合成是由一個簡單的碳化程序提出的,并可作為電極材料應用于高性能電化學電容器中。這個程序是基于交聯(lián)的PS和PMMA的互穿聚合物網(wǎng)絡的碳化。不同質(zhì)量比下的PS/PMMA碳化得到的分級多孔碳(HNC-IPNs)具有可控的孔徑,相連的孔結(jié)構(gòu),高的比表面積,優(yōu)異的電導率和電化學穩(wěn)定性。除此之外,在有效比表面積(E-SSA)和比電容之間確實存在一個良好的線性關(guān)系。其中尤其值得一提的是,樣品NHC-IPN-4具有最高的比表面積為1346 m2 g-1,相對較高的有效比表面積為603 F g-1,并且在6 M KOH中0.5 A g-1電流密度下?lián)碛袃?yōu)異的比容量為260 F g-1。與此同時,HNC-IPN-4存在一個優(yōu)異的循環(huán)性能,在2 A g-1電流密度下循環(huán)10 000次后的容量幾乎無變化且循環(huán)20 000次后容量仍可保持為96%。(2)通過一個碳化N-PF/PMMA的互穿聚合物網(wǎng)絡的化學過程來制備多尺度孔結(jié)構(gòu)的N摻雜微納米碳球,其中三聚氰胺(melamine)為氮源,酚醛樹脂(PF)為碳源,聚甲基丙烯酸甲酯(PMMA)為造孔劑。通過調(diào)控聚合前三聚氰胺和苯酚的質(zhì)量比是來控制N摻雜微納米碳球的N含量。這個N摻雜微納米碳球作為電極材料具有合理的孔徑分布、較高的比表面積(559 m2 g-1)和可調(diào)控的分布均勻的N原子的N含量。這些獨特的特征賦予了這個有前途的電極材料優(yōu)異的電化學性能。尤其是在三電極體系中的N-CS-IPN-4在6 M KOH中、電流密度為0.5 A g-1時具有最高的比容量為364 F g-1,而且它具有優(yōu)異的倍率性能(電流密度從0.5A g-1到50 A g-1時容量仍可保持57.7%)和優(yōu)秀的循環(huán)性能(2 A g-1下10 000循環(huán)后仍可保持100%)。以上所有結(jié)果表明這個N摻雜微納米碳球是一個有前途的電化學電容器的電極材料,并且它具有簡單制備過程優(yōu)勢、多尺度的孔結(jié)構(gòu)、較高的比表面積、容易調(diào)控的N摻雜含量和優(yōu)異的電化學性能。
[Abstract]:In this paper, the latest research progress of supercapacitors is reviewed, especially the preparation and structure regulation of carbon materials for supercapacitors.For double layer capacitors, it is a very important basic scientific problem to systematically study the relationship between the porosity and pore size distribution of carbon materials and the performance of super capacitors.Unfortunately, this problem is basically limited to qualitative explanations or explanations, without strong experimental verification.This is due, on the one hand, to the complexity of the system and, on the other hand, to the uncontrollability of the structure of carbon materials.Therefore, a new method for preparing carbon electrode materials with precise and controllable pore size structure by interpenetrating polymer network carbonization is proposed.The implementation of this research follows the main research route of polymer polymerization controllable carbon material structure controllable high performance super capacitor carbon electrode material as the main research route.By controlling the relative content of two polymers in the interpenetrating polymer network, the morphological structure of the interpenetrating polymer network and the pore structure of carbon materials are regulated.The main contents are as follows: (1) the synthesis of graded porous carbon with controllable pore size and effective specific surface area is proposed by a simple carbonization program and can be used as an electrode material for high performance electrochemical capacitors.This program is based on the carbonation of cross-linked PS and PMMA interpenetrating polymer networks.The graded porous carbon (HNC-IPNs) obtained by carbonization of PS/PMMA with different mass ratios has controllable pore size, connected pore structure, high specific surface area, excellent conductivity and electrochemical stability.In addition, there is a good linear relationship between the effective specific surface area (E-SSA) and the specific capacitance.In particular, it is worth mentioning that the sample NHC-IPN-4 has the highest specific surface area of 1346 m2 g-1 and the relatively high effective surface area of 603 Fg-1, and has an excellent specific capacity of 260F g-1 at the current density of 0.5 A g ~ (-1) in 6 M KOH.At the same time, HNC-IPN-4 has an excellent cycle performance.At current density of 2 A g ~ (-1), the capacity of N-doped micro-carbon spheres with multi-scale pore structure was prepared by the chemical process of an interpenetrating polymer network (IPN) of carbonized N-PF/PMMA, which had almost no change after 10 000 cycles and remained at 96 / 2 after 20 000 cycles.Melamine melamine (melamine) was used as nitrogen source, phenolic resin (PF) as carbon source and polymethyl methacrylate (PMMA) as pore-forming agent.By controlling the mass ratio of melamine to phenol before polymerization, the N content of N-doped microspheres was controlled.The N-doped nano-carbon spheres have a reasonable pore size distribution, a high specific surface area of 559 m ~ 2 路g ~ (-1) and a well-distributed N content.These unique characteristics endow this promising electrode material with excellent electrochemical properties.In particular, N-CS-IPN-4 in three-electrode system is in 6m KOH.When the current density is 0.5 A g ~ (-1), it has the highest specific capacity of 364 F g ~ (-1), and it has excellent rate performance (from 0.5 A g ~ (-1) to 50 A g ~ (-1), the capacity can still maintain 57.7%) and the excellent cycling performance (2 A g ~ (-1)) after 10 000 cycles.All the above results show that the N-doped microsphere is a promising electrode material for electrochemical capacitors, and it has the advantages of simple preparation process, multi-scale pore structure and high specific surface area.Easy to control N doping content and excellent electrochemical performance.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM53;TQ127.11
【參考文獻】
相關(guān)期刊論文 前3條
1 孫天鳴;董利民;王晨;郭文利;王莉;梁彤祥;;孔隙率對炭材料電阻率的影響(英文)[J];新型炭材料;2013年05期
2 A. Villa;M. Schiavoni;P. F. Fulvio;S. M. Mahurin;S. Dai;R. T. Mayes;G. M. Veith;L. Prati;;Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF[J];Journal of Energy Chemistry;2013年02期
3 Thang Ngoc Cong;;Progress in electrical energy storage system:A critical review[J];Progress in Natural Science;2009年03期
,本文編號:1771556
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/1771556.html
最近更新
教材專著