PTC太陽能加熱裝置在沼氣工程的應(yīng)用研究
發(fā)布時間:2024-02-25 20:39
在中中北方,如果沒有合適加熱設(shè)備的沼氣裝置往往無法實(shí)現(xiàn)全年連續(xù)產(chǎn)氣,尤其是在冬季,沒有加熱設(shè)備的沼氣裝置將不能穩(wěn)定,高效產(chǎn)氣。此外,沼氣裝置的加熱設(shè)備還必須便宜、可靠、對環(huán)境無害、能產(chǎn)生較高溫度以及高效,使用可再生能源作為沼氣裝置的外加熱源可以滿足上述條件,這正是本文研究的內(nèi)容。 咸陽地區(qū)直射及散射的太陽輻射量顯示,在該地區(qū)可以使用太陽能加熱沼氣裝置以提高其發(fā)酵溫度。 沼氣裝置內(nèi)外溫度的關(guān)系是決定加熱設(shè)備設(shè)計的一個重要的因素,根據(jù)第二章所述,沼氣裝置內(nèi)部的溫度對沼氣產(chǎn)量影響很大,當(dāng)裝置內(nèi)溫度下降時,沼氣產(chǎn)量也下降。 在第四章中,使用energy plus這一能量模擬軟件結(jié)合氣象資料對沼氣裝置的加熱進(jìn)行了8760小時的模擬。 第四章分為兩部分,第一部分是對兩個位于地上的沼氣裝置的模擬,其中一個沼氣裝置有加熱設(shè)備而另一個沒有。第四章的第二部分是對于兩個位于地下的沼氣裝置的模擬,一個使用溫室結(jié)合太陽能的加熱裝置,另一個沒有加熱裝置。結(jié)果表明,使用溫室結(jié)合太陽能加熱的效果好于其他三個,但是這一加熱系統(tǒng)并不能達(dá)到最理想的溫度,所以我們改進(jìn)了這一裝置,使用聚光型太陽能進(jìn)行加熱。與使用兩個真空管相比...
【文章頁數(shù)】:119 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1: GENERAL INTRODUCTION
1.1. Fossil fuel and renewable energy
1.1.1. Fossil fuel
1.1.2. Renewable energy
1.2. Global energy gap
1.3. Effect on environment
1.4. Biogas
1.4.1. Temperature
1.4.2. pH value
1.4.3. Percentage of solids
1.5. Solar energy
1.5.1. Flat solar heater
1.5.2. Solar collector
1.6. Using solar energy for heating biogas digester
1.7. Preface of study
1.8. Some software used in study
1.8.1. AutoCAD
1.8.2. SketchUp
1.8.3. MATLAB
1.8.4. EnergyPluse
1.8.5. Openstudio Plug-in
1.9. Innovation
CHAPTER 2: PROBLEMS STATEMENT: EFFECT OF CHANGING AMBIENT TEMPERATURE DIRECTION ON BIOGAS PRODUCTION
2.1. Introduction
2.2. Material and methods
2.2.1. The experiment design and unit setup with measurement tools
2.2.2. Biogas digesters
2.2.3. The fermentation material and inoculants
2.2.4. Gas production
2.2.5. Temperature measurement
2.3. Result and Discussion
2.3.1. The relation between ambient temperature and the temperature inside the digesters
2.3.2. The relation between the temperature inside the digesters and gas production
2.3.3. The relation between the temperature inside the digesters and gas production in outdoor group
2.3.4. The relation between the temperature inside the digesters and gas production in control room group
2.3.5. Comparisons between the gas productions with different Ts in the two groups
2.4. Conclusion and summary
CHAPTER 3: DESIGN AND NUMERICAL SIMULATION OF PARABOLIC TROUGH SOLAR COLLECTOR (PTC) FOR IMPROVE THE EFFICIENCY
3.1. Introduction
3.2. Design of PTC
3.2.1. Focal point and Parabola design
3.2.1.1. Focal point
3.2.1.2. Frame Design
3.2.2. Heating pipe
3.2.3. The surface area of solar collector
3.3. Solar energy calculation
3.3.1. The solar energy flux incident on a tilted surface per day
3.3.1.1. Extraterrestrial radiation on a horizontal surface outside earth's atmosphere (Ho)
3.3.1.2. Total solar radiation flux incident on horizontal surface of the ground (H)
3.3.1.3. Ratio of monthly average radiation on a horizontal surface to the monthly average daily extraterrestrial radiation (kt)
3.3.1.4. Beam and diffuse components of daily radiation.
3.3.1.5. Total solar radiation flux incident on a fixed slope surface(Ht)
3.3.2. The solar energy flux incident on a tilted surface per Hour
3.3.2.1. The clear sky beam radiation on a horizontal surface (Icb)
3.3.2.2. The clear sky diffuses radiation on a horizontal surface (Icd)
3.3.2.3. The clear sky total radiation on a horizontal surface(Ic)
3.3.2.4. An hour clearness index(kt )
3.3.2.5. Beam and diffuse components of radiation per hour
3.3.2.6. Total radiation on tilted surface(IT)
3.4. Conclusion
CHAPTER 4: SIMULATION OF SOLAR HEATING BIOGAS DIGESTERS ABOVE AND UNDER-GROUND FOR RAISING ORGANIC MATTER TEMPERATURE WITHOUT USING PTC
4.1. Introduction
4.2. Material and methods
4.2.1. Biogas digester above ground
4.2.1.1. Design of biogas digester above the ground
4.2.1.2. Design of Solar heating system for biogas digester above ground
4.2.2. Biogas digester underground
4.2.2.1. Design of biogas digester underground
4.2.2.2. Design of greenhouse
4.2.2.3. Design of inlet
4.3. Result and Discussion
4.3.1. Environmental variables
4.3.2. Biogas digester above ground (D1)
4.3.3. Biogas digester above ground with heating system (D2)
4.3.3.1. Biogas digester
4.3.3.2. Heating system of Biogas digester above ground
4.3.4. Biogas digester underground(D3)
4.3.5. Biogas digester underground with inlet heating (D4)
4.3.5.1. Biogas digester
4.3.5.2. Inlet
4.3.5.3. Greenhouse
4.3.6. Comparison between four digesters
4.4. Conclusion
CHAPTER 5: HEATING BIOGAS DIGESTER BY USING PTC AND GREEN HOUSE
5.1. Introduction
5.2. Material and methods
5.2.1. Description of first part
5.2.1.1. Biogas digester
5.2.1.2. Solar heating system
5.2.1.3. Greenhouse
5.2.1.4. Design of hot water auxiliary
5.2.1.5. Control unit
5.2.2. Description of second part (Future design)
5.2.2.1. Biogas digester
5.2.2.2. Solar water heater
5.2.2.3. The green house
5.3. Result and Discussion
5.3.1. Green house
5.3.2. Solar water heater
5.3.3. Biogas digester
5.3.4. The new system
5.4. Analyze of system and economic study
5.4.1. Calculation of total energy for heating and Co2 emissions
5.4.2. The overall energy collected by the system
5.4.3. Economic study
5.5. Conclusion
CHAPTER 6: CONCLUSION AND RECOMMENDATION
REFERENCES
LIST OF TABLE
LIST OF FIGURES
APPENDIX A
APPENDIX B
ACKNOWLEDGEMENT
CURRICULUM VITAE
本文編號:3910825
【文章頁數(shù)】:119 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1: GENERAL INTRODUCTION
1.1. Fossil fuel and renewable energy
1.1.1. Fossil fuel
1.1.2. Renewable energy
1.2. Global energy gap
1.3. Effect on environment
1.4. Biogas
1.4.1. Temperature
1.4.2. pH value
1.4.3. Percentage of solids
1.5. Solar energy
1.5.1. Flat solar heater
1.5.2. Solar collector
1.6. Using solar energy for heating biogas digester
1.7. Preface of study
1.8. Some software used in study
1.8.1. AutoCAD
1.8.2. SketchUp
1.8.3. MATLAB
1.8.4. EnergyPluse
1.8.5. Openstudio Plug-in
1.9. Innovation
CHAPTER 2: PROBLEMS STATEMENT: EFFECT OF CHANGING AMBIENT TEMPERATURE DIRECTION ON BIOGAS PRODUCTION
2.1. Introduction
2.2. Material and methods
2.2.1. The experiment design and unit setup with measurement tools
2.2.2. Biogas digesters
2.2.3. The fermentation material and inoculants
2.2.4. Gas production
2.2.5. Temperature measurement
2.3. Result and Discussion
2.3.1. The relation between ambient temperature and the temperature inside the digesters
2.3.2. The relation between the temperature inside the digesters and gas production
2.3.3. The relation between the temperature inside the digesters and gas production in outdoor group
2.3.4. The relation between the temperature inside the digesters and gas production in control room group
2.3.5. Comparisons between the gas productions with different Ts in the two groups
2.4. Conclusion and summary
CHAPTER 3: DESIGN AND NUMERICAL SIMULATION OF PARABOLIC TROUGH SOLAR COLLECTOR (PTC) FOR IMPROVE THE EFFICIENCY
3.1. Introduction
3.2. Design of PTC
3.2.1. Focal point and Parabola design
3.2.1.1. Focal point
3.2.1.2. Frame Design
3.2.2. Heating pipe
3.2.3. The surface area of solar collector
3.3. Solar energy calculation
3.3.1. The solar energy flux incident on a tilted surface per day
3.3.1.1. Extraterrestrial radiation on a horizontal surface outside earth's atmosphere (Ho)
3.3.1.2. Total solar radiation flux incident on horizontal surface of the ground (H)
3.3.1.3. Ratio of monthly average radiation on a horizontal surface to the monthly average daily extraterrestrial radiation (kt)
3.3.1.4. Beam and diffuse components of daily radiation.
3.3.1.5. Total solar radiation flux incident on a fixed slope surface(Ht)
3.3.2. The solar energy flux incident on a tilted surface per Hour
3.3.2.1. The clear sky beam radiation on a horizontal surface (Icb)
3.3.2.2. The clear sky diffuses radiation on a horizontal surface (Icd)
3.3.2.3. The clear sky total radiation on a horizontal surface(Ic)
3.3.2.4. An hour clearness index(kt )
3.3.2.5. Beam and diffuse components of radiation per hour
3.3.2.6. Total radiation on tilted surface(IT)
3.4. Conclusion
CHAPTER 4: SIMULATION OF SOLAR HEATING BIOGAS DIGESTERS ABOVE AND UNDER-GROUND FOR RAISING ORGANIC MATTER TEMPERATURE WITHOUT USING PTC
4.1. Introduction
4.2. Material and methods
4.2.1. Biogas digester above ground
4.2.1.1. Design of biogas digester above the ground
4.2.1.2. Design of Solar heating system for biogas digester above ground
4.2.2. Biogas digester underground
4.2.2.1. Design of biogas digester underground
4.2.2.2. Design of greenhouse
4.2.2.3. Design of inlet
4.3. Result and Discussion
4.3.1. Environmental variables
4.3.2. Biogas digester above ground (D1)
4.3.3. Biogas digester above ground with heating system (D2)
4.3.3.1. Biogas digester
4.3.3.2. Heating system of Biogas digester above ground
4.3.4. Biogas digester underground(D3)
4.3.5. Biogas digester underground with inlet heating (D4)
4.3.5.1. Biogas digester
4.3.5.2. Inlet
4.3.5.3. Greenhouse
4.3.6. Comparison between four digesters
4.4. Conclusion
CHAPTER 5: HEATING BIOGAS DIGESTER BY USING PTC AND GREEN HOUSE
5.1. Introduction
5.2. Material and methods
5.2.1. Description of first part
5.2.1.1. Biogas digester
5.2.1.2. Solar heating system
5.2.1.3. Greenhouse
5.2.1.4. Design of hot water auxiliary
5.2.1.5. Control unit
5.2.2. Description of second part (Future design)
5.2.2.1. Biogas digester
5.2.2.2. Solar water heater
5.2.2.3. The green house
5.3. Result and Discussion
5.3.1. Green house
5.3.2. Solar water heater
5.3.3. Biogas digester
5.3.4. The new system
5.4. Analyze of system and economic study
5.4.1. Calculation of total energy for heating and Co2 emissions
5.4.2. The overall energy collected by the system
5.4.3. Economic study
5.5. Conclusion
CHAPTER 6: CONCLUSION AND RECOMMENDATION
REFERENCES
LIST OF TABLE
LIST OF FIGURES
APPENDIX A
APPENDIX B
ACKNOWLEDGEMENT
CURRICULUM VITAE
本文編號:3910825
本文鏈接:http://sikaile.net/projectlw/xnylw/3910825.html
最近更新
教材專著