天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 理工論文 > 新能源論文 >

海藻生物質(zhì)與廢棄塑料共熱解制備高性能生物燃料的研究

發(fā)布時間:2020-10-13 06:32
   本文研究了海藻生物質(zhì)與廢塑料的共熱解過程,為生物燃料的工業(yè)化生產(chǎn)提供實驗依據(jù)。通過使用固定床反應(yīng)器,熱重分析儀,熱解氣相色譜/質(zhì)譜(PyGC/MS)分析,氣相色譜/質(zhì)譜(GC/MS)分析,傅里葉變換紅外(FTIR)光譜分析以及模擬和優(yōu)化等方法研究在不同條件下廢棄塑料高密度聚乙烯(HDPE)和典型海藻條滸苔(EP)的共熱解過程。首先在固定床反應(yīng)器和熱重分析儀中研究了條滸苔和廢高密度聚乙烯(有無催化劑HSZM-5參與)的共熱解,以獲得最大產(chǎn)率的液體燃料。該部分著重分析了條滸苔和廢塑料(HDPE)的共熱解和催化共熱解的協(xié)同效應(yīng)、產(chǎn)物分布特性和動力學(xué)特性,其創(chuàng)新性及研究結(jié)果概述如下:(i)揭示了協(xié)同作用的存在抑制了炭化并減少了固體殘留物的形成,并且降低了生物油中酸類、含氧化合物和含氮化合物的含量,而油中的芳烴和小分子碳?xì)浠衔锏暮匡@著增加;(ii)揭示了HZSM5催化劑能有效改善脂族烴的反應(yīng)活性,產(chǎn)率和選擇,并且在不改變反應(yīng)機理的情況下降低了活化能。因此,在共熱解和催化共熱解過程中,羧酸/酯(41.72%)的相對含量分別降低了13.57%和19.87%,而含氮化合物的含量(19.73%)分別減少了7.3%和10.28%。同時在共熱解和催化共熱解所得到的生物油中,觀察到烴類的相對含量(18.47%)分別增加了32.05%和45.70%。(iii)使用TGA數(shù)據(jù)通過五種不同的方法進(jìn)行非等溫動力學(xué)分析:Friedman,FWO,Vyazovkin,KAS和DAEM方法,結(jié)果表明催化共熱解可以通過降低活化能顯著降低該過程的能量輸入。(iv)共熱解和催化共熱解所得到生物油的傅里葉變換紅外光譜結(jié)果與氣相色譜質(zhì)譜聯(lián)用的分析結(jié)果一致。其次,基于海藻和廢塑料的共熱解過程使用了兩種不同的建模方法(即交互式和非交互式方法)研究了共熱解過程中海藻(EP)和廢塑料(HDPE)之間能量相關(guān)的協(xié)同效應(yīng)。.該部分研究的創(chuàng)新性及研究結(jié)果概述如下:(i)提出了兩種建模方法,用于評估在共熱解過程中海藻(EP)和廢塑料(HDPE)之間存在的與能量相關(guān)的協(xié)同效應(yīng)。(ii)共熱解過程中能量利用的結(jié)果表明,對于兩種建模方法,海藻(EP)和廢塑料(HDPE)共熱解的能量顯著降低。然而,第二種建模方法(即允許原料之間相互作用的交互式方法)在共熱解過程中的總能量利用率比第一種方法顯示出更大程度的降低(約7.82%),尤其是當(dāng)原料混合物中廢棄HDPE塑料的質(zhì)量百分比為25wt%時。(iii)共熱解建模和模擬研究的結(jié)果表明,海藻(EP)與廢塑料(HDPE)的共熱解能夠?qū)崿F(xiàn)能量輸入最小化,提高熱解產(chǎn)物的產(chǎn)率和品質(zhì),最大化熱解產(chǎn)物餾分的價值,同時提高熱解過程的整體效率。此外,本論文研究的第三部分重點是考察固定床反應(yīng)器中海藻(EP)和廢塑料(HDPE)的共熱解制油規(guī)律,重點是建模和模擬共熱解參數(shù)對產(chǎn)物產(chǎn)率的影響,然后優(yōu)化實驗參數(shù)以提高液體燃料的最大產(chǎn)率。該部分研究的創(chuàng)新性及結(jié)果概述如下:(i)分別模擬了三種有效共熱解參數(shù)(熱解溫度,原料混合比和加熱速率)對油、焦炭和氣體產(chǎn)率的主要影響和作用,并預(yù)測了獲得生物燃料最大產(chǎn)率的最佳條件,對實驗結(jié)果進(jìn)行方差分析與回歸性分析。(ii)分析產(chǎn)物生物油和焦炭的性質(zhì),表明EP和HDPE的共熱解的協(xié)同效應(yīng)可以有效改善燃料品質(zhì)。(iii)獲得了生物油最大產(chǎn)率的最佳條件為492℃和17.8℃/min,原料混合物中具有80%質(zhì)量的HDPE,試驗值為76.84%,76.27%和76.65%的油產(chǎn)率,而最大預(yù)測值為76.0%,誤差較小。本文的第四部分研究比較了在熱解溫度和加熱速率保持相同的條件下固定床反應(yīng)器中海藻(EP)和廢塑料(HDPE)分別與典型木質(zhì)纖維素生物質(zhì)(稻殼)的共熱解實驗結(jié)果。其次,還比較了共熱解參數(shù)對產(chǎn)物收率的影響的建模和模擬結(jié)果。原料混合物中的稻殼(RH)的質(zhì)量百分比,熱解溫度和加熱速率顯著影響了生物油和焦炭產(chǎn)率。獲得最大油產(chǎn)率的最佳條件是:溫度為455℃,加熱速率為20℃/min,原料混合物中的稻殼的質(zhì)量百分比為80%。確認(rèn)試驗結(jié)果的生物油產(chǎn)率是48.20%,48.05%和47.90%,預(yù)測的最大值為47.70%,預(yù)測誤差較小。本文最后研究了海藻生物質(zhì)模型化合物(蓖麻油,大豆蛋白和葡萄糖)代表主要成分(碳水化合物,蛋白質(zhì)和脂質(zhì))在熱解反應(yīng)中的交互作用,也為易于理解海藻共熱解的復(fù)雜機制提供了重要的基礎(chǔ)。主要使用Py-GC/MS分析來鑒定和定量海藻及其模型化合物在有或沒有HZSM-5催化劑條件下的熱解反應(yīng)產(chǎn)物。主要結(jié)論為:(i)基于其模型組分及其相互作用,結(jié)合原料熱解的PyGC/MS結(jié)果和通過固定床反應(yīng)器實驗產(chǎn)生的生物油的GC/MS結(jié)果,提出了幾種可能海藻熱解反應(yīng)路徑。(ii)此外,該研究的結(jié)果還表明蓖麻油對其他模型化合物中生物油形成的貢獻(xiàn)作用最為顯著,然而,相比于其他模型化合物,來自大豆蛋白熱解的生物油含有更多N-雜環(huán)類和酚類化合物。(iii)隨著催化劑與原料比的增加,芳烴產(chǎn)率顯著提高。因此,本論文的研究結(jié)果對使用海藻生物質(zhì)和廢棄塑料共熱解產(chǎn)生高品質(zhì)生物燃料具有一定的參考意義。本文的結(jié)果為制定共熱解系統(tǒng)的設(shè)計、運行規(guī)范、資源回收和有機廢物管理的有效戰(zhàn)略提供了重要的實驗參考。另一方面建議后續(xù)的研究應(yīng)該進(jìn)一步探究共熱解產(chǎn)物分布,了解海藻生物質(zhì)本身存在的礦物質(zhì)對于其與廢塑料的共熱解過程影響機制,以及各種催化劑對于熱解的影響作用等,實現(xiàn)全面理解海藻和廢塑料共熱解的整體機制。
【學(xué)位單位】:江蘇大學(xué)
【學(xué)位級別】:博士
【學(xué)位年份】:2019
【中圖分類】:TK6
【文章目錄】:
摘要
ABSTRACT
NOMENCLATURE
CHAPTER 1 GENERAL INTRODUCTION
    1.1 BACKGROUND OF THE STUDY AND STATEMENT OF THE PROBLEM
    1.2 OBJECTIVES OF THE STUDY
    1.3 SCIENTIFIC NOVELTY IN THE RESULTS/FINDINGS
    1.4 SIGNIFICANCE OF THE STUDY
    1.5 FRAMEWORK
    1.6 ORGANIZATION OF THE DISSERTATION
    1.7 SUMMARY
CHAPTER 2 LITERATURE REVIEW
    2.1 INTRODUCTION
    2.2 RELEVANCE AND DRAWBACKS OF CO-PYROLYSIS
    2.3 MECHANISMS OF BIOMASS-PLASTIC CO-PYROLYSIS PROCESS
    2.4 MAIN COMPOSITIONS OF BIOMASS
    2.5 SUMMARY OF DIFFERENT PLASTICS TYPES COMMONLY USED FOR CO-PYROLYSIS
    2.6 BIOMASS-PLASTIC CO-PYROLYSIS PRODUCTS
    2.7 BIOMASS AND WASTE PLASTICS CO-PYROLYSIS TECHNOLOGIES/PROCESSES
    2.8 Main Reactor Types used during Biomass-plastic Co-pyrolysis and the Process Conditions
    2.9 THE ROLE OF CATALYSTS IN BIOMASS-PLASTIC CO-PYROLYSIS
    2.10 OVERVIEW OF PREVIOUS STUDIES AND RECENT ADVANCES ON CO-PYROLYSIS OF BIOMASS AND PLASTICS
        2.10.1 Previous studies and recent advances on biomass–plastics co-pyrolysis in China
        2.10.2 Previous studies and recent progress on biomass–plastics co-pyrolysis elsewhere in the world
    2.11 SYNERGISTIC EFFECT BETWEEN BIOMASS AND PLASTICS IN CO-PYROLYSIS
        2.11.1 Increased bio-oil yield
        2.11.2 Improved bio-oil quality
        2.11.3 Effect of biomass–plastic co-pyrolysis on by-products (char and gas) production
    2.12 SUMMARY OF THE EFFECT OF MAJOR OPERATING PARAMETERS ON CO-PYROLYSISPRODUCTS YIELD
    2.13 FUTURE DIRECTIONS IN BIOMASS–PLASTICS CO-PYROLYSIS
    2.14 SUMMARY OF THE RESEARCH GAPS
    2.15 CONCLUSION
CHAPTER 3 CO-PYROLYSIS OF SEAWEEDS AND WASTE PLASTICS (WITH OR WITHOUT A CATALYST): THERMAL BEHAVIORS, KINETIC STUDIES, SYNERGISTIC EFFECT AND PRODUCTS CHARACTERIZATION
    3.1 INTRODUCTION
    3.2 MATERIALS AND METHODS
        3.2.1 Materials
        3.2.2 Catalyst preparation
        3.2.3 Thermogravimetric analysis
        3.2.4 Kinetics study
        3.2.5 Pyrolysis,catalytic and non-catalytic co-pyrolysis experiments and synergistic effect
        3.2.6 Gas chromatography-mass spectrometry (GC/MS) analysis
        3.2.7 Fourier Transform Infrared (FTIR) spectroscopy analysis
    3.3 RESULTS AND DISCUSSION
        3.3.1 Sample characterization results
        3.3.2 Thermogravimetric analysis and thermal degradation behaviors
        3.3.3 Kinetic evaluation of normal pyrolysis, non-catalytic and catalytic co-pyrolysis processes
        3.3.4 Product distributions duringnormal pyrolysis, co-pyrolysis and catalytic co-pyrolysis
        3.3.5 Catalytic and non-catalytic co-pyrolysis oil characterization
        3.3.6 Catalytic and non-catalytic co-pyrolysis oils and chars’ properties, and synergistic effect
        3.3.7 FTIR spectra analysis of co-pyrolysis and catalytic co-pyrolysis oils
    3.4 CONCLUSIONS
CHAPTER 4 MODELING OF CO-PYROLYSIS OF SEAWEEDS AND WASTEPLASTICS FOR ENERGY UTILIZATION REDUCTION
    4.1 INTRODUCTION
    4.2 MODEL DEVELOPMENT
        4.2.1 Model description
        4.2.2 Model formulation
    4.3 CO-PYROLYSIS MODELING APPROACHES
        4.3.1 Modeling approach I (Non-interactive method)
        4.3.2 Modeling approach II (Interactive method)
    4.4 EXPERIMENTAL STUDY
    4.5 RESULTS AND DISCUSSION
        4.5.1 Thermal analyses, co-pyrolysis kinetics and synergistic interactions
        4.5.2 Modeling approach for energy-related synergistic effects evaluation
    4.6 CONCLUSION
CHAPTER 5 CO-PYROLYSIS OF SEAWEEDS WITH WASTE PLASTICS:MODELING AND SIMULATION OF EFFECTS OF CO-PYROLYSIS PARAMETERS ON YIELDS, AND OPTIMIZATION STUDIES FOR ENHANCED BIOFUELS’ YIELD
    5.1 INTRODUCTION
    5.2 MATERIALS AND METHODS
        5.2.1 Materials and samples analysis
        5.2.2 Thermo-gravimetric analysis
        5.2.3 Pyrolysis process procedures
        5.2.4 Experimental design and optimization studies
        5.2.5 Pyrolysis products characterization
    5.3 RESULTS AND DISCUSSION
        5.3.1 Thermo-gravimetric analysis (TGA) and kinetics analysis
        5.3.2 Co-pyrolysis oil, char and gas yields
        5.3.3 Model fitting, evaluation and validation
        5.3.4 Optimization studies and effects of co-pyrolysis parameters on bio-oil,char and gas yields
        5.3.5 Pyrolysis oil characterization
        5.3.6 Properties of bio-oils and chars and co-pyrolysis synergistic effect
    5.4 CONCLUSION
CHAPTER 6 CO-PYROLYSIS OF SEAWEEDS WITH WASTE PLASTIC AND LIGNOCELLULOSIC BIOMASS UNDER SIMILAR PYROLYSIS CONDITIONS: A COMPARATIVE STUDY
    6.1 INTRODUCTION
    6.2 MATERIALS AND METHODS
        6.2.1 Materials and analysis
        6.2.2 Pyrolysis process procedures
        6.2.3 Experimental design and optimization study
        6.2.4 Analysis of bio-oil and char products and determination of some vital oil and char properties
    6.3 RESULTS AND DISCUSSION
        6.3.1 Sample analysis results
        6.3.2 Pyrolysis oil and char yields
        6.3.3 Model fitting, evaluation and ANOVA analysis
        6.3.4 Optimization study results, confirmatory experiments and the effects of factors on responses
        6.3.5 Synergistic effect of co-pyrolysis on bio-oil yield
        6.3.6 Pyrolysis and co-pyrolysis products characterization
    6.4 CONCLUSION
CHAPTER 7 SEAWEED PYROLYSIS MECHANISMS AND CHARACTERISTICS BASED ON THE MODEL COMPOUNDS AND THEIR INTERACTIONS: A PRELIMINARY STUDY TOWARDS UNDERSTANDING CO-PYROLYSIS MECHANISMS
    7.1 INTRODUCTION
    7.2 MATERIALS AND METHODS
        7.2.1 Materials
        7.2.2 Catalyst preparation
        7.2.3 Thermogravimetric analysis and fixed-bed experiments
        7.2.4 GC/MS analysis of bio-oils from fixed-bed experiments
        7.2.5 Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS)
    7.3 RESULTS AND DISCUSSION
        7.3.1 Thermal degradation characteristics of seaweed and its model compounds
        7.3.2 Pyrolysis products distribution
        7.3.3 Pyrolysis oils compositions determined by GC/MS analysis
        7.3.4 Py-GC/MS analysis of seaweed, its model compounds and their mixtures
        7.3.5 Potential possible pyrolysis pathways of seaweed and its components’ interactions
    7.4 CONCLUSION
CHAPTER 8 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK
    8.1 CONCLUSION
    8.2 RECOMMENDATIONS FOR FUTURE WORK
REFERENCES
ACKNOWLEDGEMENT
PUBLISHED ARTICLES
OTHER PUBLICATIONS AT JIANGSU UNIVERSITY DURING MY Ph.D PROGRAM
APPENDICES


本文編號:2838859

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/projectlw/xnylw/2838859.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶625b8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com