兩種非洲水稻響應(yīng)鹽脅迫的比較蛋白質(zhì)組學(xué)和磷酸化蛋白質(zhì)組學(xué)分析
發(fā)布時(shí)間:2021-03-18 11:15
水稻是全球超過50%人口的主食(Samiullah Khan,2016),它被認(rèn)為是僅次于小麥的全球第二大農(nóng)產(chǎn)品。水稻具有很高的農(nóng)業(yè)和經(jīng)濟(jì)價(jià)值,但同時(shí)在水稻的種植過程中也面臨著生物和非生物等不同類型的脅迫。其中,土壤鹽含量在影響全球農(nóng)業(yè)生產(chǎn)的非生物脅迫類型中排名第二。鹽脅迫通過干擾植物細(xì)胞內(nèi)的各種生物學(xué)過程,導(dǎo)致抑制植物生長從而減少產(chǎn)量。從分子水平研究植物鹽脅迫的機(jī)理,從而克服鹽脅迫影響達(dá)到增產(chǎn)的目標(biāo)是當(dāng)務(wù)之急。本研究旨在于利用對(duì)鹽脅迫敏感和鹽脅迫耐受型水稻品種的比較蛋白質(zhì)組學(xué)分析,從蛋白質(zhì)及其翻譯后修飾水平解析水稻抗鹽脅迫的機(jī)理。同時(shí)也在形態(tài)以及生理生化水平上開展了比較研究。主要研究結(jié)果顯示敏感和耐受品種在鹽脅迫下的形態(tài)學(xué)、生理、生物化學(xué)、蛋白質(zhì)組學(xué)和翻譯后修飾(磷酸化)發(fā)生了顯著變化。1)形態(tài)學(xué)研究揭示了在鹽處理1天和3天后,根長、莖長、幼苗長度和側(cè)根數(shù)量的統(tǒng)計(jì)學(xué)發(fā)生了顯著性變化。2)對(duì)鹽處理1天和3天的生理生化研究表明,與耐受品種相比,敏感品種的丙二醛(MDA)、電解質(zhì)滲漏(EL)、鈉離子和過氧化氫濃度更高。3)蛋白質(zhì)組學(xué)研究表明,在不同的代謝和調(diào)控途徑下,其表達(dá)模式是相似的、動(dòng)...
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院武漢植物園)湖北省
【文章頁數(shù)】:89 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Background
1.1 Rice
1.1.2 Domestication
1.1.3 Environmental factors affecting rice production
1.1.4 Rice Food security
1.2 Introduction to salinity stress
1.2.1 Salinity
1.2.2 Impact of salt stress on global agricultural production
1.2.3 Mechanism of salinity tolerance
1.2.4 Biochemical and molecular mechanisms of salt tolerance
1.2.5 Signal transduction
1.2.6 Crop species with varying degrees of salt tolerance transport in plants
1.2.7 Input of proteomics (and phospho-proteomics)
1.3 Objectives
1.3.1 Overall objective:
1.3.2 Specific Objectives
Chapter 2 Materials and Methods
2.1 Rice Culture,Salt Treatment and Harvest
2.2 Protein extraction
2.2.1 Protein concentration
2.2.2 Protein digestion
2.2.3 IMAC enrichment of phospho-peptides
2.2.4 Nano-LC-MS/MS analysis
2.3 MDA determination TBA/TCA plate reader method
2.4 Electrolyte leakage
2.5 Potassium and sodium ions determination
2.6 Determination of Hydrogen peroxide
2.7 Morphological observation
2.8 Data analysis
Chapter 3 Results
3.1 Morphological changes under 300 mM NaCl stress
3.2 Physiological and biochemical under 300 mM Nacl
3.2.1 MDA concentration and Hydrogen peroxide under salt stress
3.2.2 Electrolyte leakage, potassium and sodium ions concentration under saltstress
3.3 Protein expression under salt stress
3.3.1 Heat map for the differential expression of proteins
3.3.2 Metabolism overview under salt stress
3.3.3 Regulation overview under different pathways
3.3.4 Protein abundance and function under metabolisms
Chapter 4 Discussion
4.1 Rice responses at morphological and physiological levels
4.2 General adaptations of rice to salt stress
4.3 Salt-responsive signaling pathways in roots
4.3.1 Calcium regulation, Ca2+ signaling and Ca2+ binding proteins
4.3.2 Salt sensing and signaling
4.3.3 G protein mediated signaling
4.3.4 14-3-3 proteins
4.3.5 Kinase cascades
4.4 Phosphorylation
Chapter 5 Conclusion and Prospective
References
Appendices
Acknowledgement
Student Profile
Academic records
List of publication during MSc study
Project affiliation
【參考文獻(xiàn)】:
期刊論文
[1]Transport, signaling, and homeostasis of potassium and sodium in plants[J]. Eri Adams,Ryoung Shin. Journal of Integrative Plant Biology. 2014(03)
本文編號(hào):3088225
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院武漢植物園)湖北省
【文章頁數(shù)】:89 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Background
1.1 Rice
1.1.2 Domestication
1.1.3 Environmental factors affecting rice production
1.1.4 Rice Food security
1.2 Introduction to salinity stress
1.2.1 Salinity
1.2.2 Impact of salt stress on global agricultural production
1.2.3 Mechanism of salinity tolerance
1.2.4 Biochemical and molecular mechanisms of salt tolerance
1.2.5 Signal transduction
1.2.6 Crop species with varying degrees of salt tolerance transport in plants
1.2.7 Input of proteomics (and phospho-proteomics)
1.3 Objectives
1.3.1 Overall objective:
1.3.2 Specific Objectives
Chapter 2 Materials and Methods
2.1 Rice Culture,Salt Treatment and Harvest
2.2 Protein extraction
2.2.1 Protein concentration
2.2.2 Protein digestion
2.2.3 IMAC enrichment of phospho-peptides
2.2.4 Nano-LC-MS/MS analysis
2.3 MDA determination TBA/TCA plate reader method
2.4 Electrolyte leakage
2.5 Potassium and sodium ions determination
2.6 Determination of Hydrogen peroxide
2.7 Morphological observation
2.8 Data analysis
Chapter 3 Results
3.1 Morphological changes under 300 mM NaCl stress
3.2 Physiological and biochemical under 300 mM Nacl
3.2.1 MDA concentration and Hydrogen peroxide under salt stress
3.2.2 Electrolyte leakage, potassium and sodium ions concentration under saltstress
3.3 Protein expression under salt stress
3.3.1 Heat map for the differential expression of proteins
3.3.2 Metabolism overview under salt stress
3.3.3 Regulation overview under different pathways
3.3.4 Protein abundance and function under metabolisms
Chapter 4 Discussion
4.1 Rice responses at morphological and physiological levels
4.2 General adaptations of rice to salt stress
4.3 Salt-responsive signaling pathways in roots
4.3.1 Calcium regulation, Ca2+ signaling and Ca2+ binding proteins
4.3.2 Salt sensing and signaling
4.3.3 G protein mediated signaling
4.3.4 14-3-3 proteins
4.3.5 Kinase cascades
4.4 Phosphorylation
Chapter 5 Conclusion and Prospective
References
Appendices
Acknowledgement
Student Profile
Academic records
List of publication during MSc study
Project affiliation
【參考文獻(xiàn)】:
期刊論文
[1]Transport, signaling, and homeostasis of potassium and sodium in plants[J]. Eri Adams,Ryoung Shin. Journal of Integrative Plant Biology. 2014(03)
本文編號(hào):3088225
本文鏈接:http://sikaile.net/projectlw/swxlw/3088225.html
最近更新
教材專著