馬鈴薯渣及其膳食纖維結(jié)構(gòu)、物化與功能特性研究
發(fā)布時(shí)間:2021-06-07 21:09
馬鈴薯(Solanum tuberosum)是僅次于小麥、水稻和玉米的世界第四大糧食作物。淀粉加工過(guò)程中產(chǎn)生大量馬鈴薯渣,這些薯渣中含有蛋白質(zhì)、淀粉、膳食纖維等物質(zhì),且粒徑對(duì)甘薯渣的加工特性有不同的影響。此外,目前未見(jiàn)不同環(huán)境因子及改性處理對(duì)馬鈴薯膳食纖維結(jié)構(gòu)、物化及功能特性的影響。因此,本論文研究了不同粒徑對(duì)馬鈴薯渣結(jié)構(gòu)、物化及功能特性的影響,以及對(duì)添加不同粒徑馬鈴薯渣粉條品質(zhì)特性的影響。此外,還研究了環(huán)境因素及改性處理對(duì)馬鈴薯膳食纖維結(jié)構(gòu)、物化和功能特性的影響。本研究成果可為馬鈴薯渣及其膳食纖維在食品工業(yè)中的應(yīng)用提供基礎(chǔ)數(shù)據(jù)和理論依據(jù)。結(jié)果如下:研究了粒徑對(duì)甘薯渣結(jié)構(gòu)、物化及功能特性的影響規(guī)律,以及對(duì)添加馬鈴薯渣粉條品質(zhì)特性的影響。結(jié)果顯示,馬鈴薯渣中蛋白、灰分、膳食纖維含量以及持水能力、溶解度隨粒徑的減小而降低,而淀粉、脂肪、總酚含量以及α-淀粉酶活性抑制能力隨粒徑的減小而增大。超微粉碎處理的馬鈴薯渣具有最高的總酚含量(2.26 mgCAE/g)、葡萄糖吸收能力(7.03 mmol/g)和膽固醇吸收能力(16.54%),并且超微粉碎馬鈴薯渣制作的高纖粉條具有較好的拉伸特性和蒸煮特...
【文章來(lái)源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:103 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
博士學(xué)位論文評(píng)閱人、答辯委員會(huì)簽名表
摘要
abstract
Abbreviations
CHAPTER 1 INTRODUCTION
1.1 General Introduction
1.2 Potato residue:characterization and utilization
1.2.1 Values and environmental risk of potato waste residue
1.2.2 Particle size and grinding effect on potato residue
1.3 Dietary fibre production and utilization from potato wastes residue
1.4 Modified Dietary fibre production and utilization
1.5 Aim and content of research
1.5.1Aim
1.5.2 Research content
1.5.3 Technical road map
CHAPTER 2 EFFECTS OF PARTICLE SIZE ON STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO RESIDUE AND THE QUALITY CHARACTERISTICS OF STARCH NOODLES THEREOF
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials and reagents
2.2.2 Preparation of potato residue with different particle size
2.2.3 Particle size distribution
2.2.4 Proximate composition
2.2.5 Color measurement
2.2.6 Total polyphenol content
2.2.7 Thermal Properties
2.2.8 Fourier-transformed infrared spectroscopy(FT-IR)
2.2.9 Scanning electron microscopy(SEM)
2.2.10 Physicochemical and functional properties
2.2.11 Starch noodles preparation and qualities determination
2.2.12 Statistical analysis
2.3 Results and discussion
2.3.1 Proximate composition of potato residue flours
2.3.2 Particle size distribution
2.3.3 Colour measurement
2.3.4 Phenolic compound
2.3.5 Thermal properties of potato residues
2.3.6 FT-IR spectra
2.3.7 SEM observation
2.3.8 Hydration properties
2.3.9 Functional properties
2.3.10 Textural properties of wet starch noodles
2.3.11 Cooking time
2.3.12 In vitro starch digestibility
2.4 Conclusion
CHAPTER 3 STRUCTURE,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF TOTAL,SOLUBLE,AND INSOLUBLE DIETARY FIBER FROM POTATO RESIDUES
3.1 Introduction
3.2 Material and methods
3.2.1 Materials and reagents:
3.2.2 Dietary fiber preparation and extraction from potato residue
3.2.3 Proximate composition
3.2.4 Chemical constituents
3.2.5 Neutral sugars and uronic acid content of potato dietary fibres
3.2.6 Water retention capacity(WRC)
3.2.7 Water solubility(WS)
3.2.8 Water swelling capacity(WSC)
3.2.9 Oil holding capacity(OHC)
3.2.10 Glucose adsorption capacity(GAC)
3.2.11 Cholesterol binding capacity(CBC)
3.2.12 α-Amylase activity inhibition ratio(α-AAIR)
3.2.13 Fourier-transformed infrared spectroscopy(FT-IR)
3.2.14 Scanning electron microscopy(SEM)
3.2.15 Statistical analysis
3.3 Results and discussion
3.3.1 Characterization of DFs from potato residue
3.3.2 Monosaccharide content of potato dietary fibre
3.3.3 Scanning electron microscopy(SEM)
3.3.4 FT-IR Spectra
3.3.5 Physicochemical properties
3.3.6 Functional properties
3.4 Conclusion
CHAPTER 4 EFFECTS OF HIGH HYDROSTATIC PRESSURE AND CELLULASE MODIFICATION ON THE STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO DIETARY FIBER
4.1 Introduction
4.2 Material and methods
4.2.1 Materials and reagents
4.2.2 Dietary fiber preparation and extraction from potato residue
4.2.3 Single‐factor experiment
4.2.4 High hydrostatic pressure(HHP)modification
4.2.5 Enzymatic hydrolysis
4.2.6 Combined enzyme and HHP treated modified DF
4.2.7 Soluble dietary fiber(SDF)determination
4.2.8 Proximate composition
4.2.9 Neutral sugars and uronic acid content of potato modified dietary fibres
4.2.10 Scanning electron microscopy(SEM)
4.2.11 Fourier-transformed infrared spectroscopy(FT-IR)
4.2.12 Water retention capacity(WRC)
4.2.13 Water solubility(WS)
4.2.14 Water swelling capacity(WSC)
4.2.15 Oil holding capacity(OHC)
4.2.16 Glucose adsorption capacity(GAC)
4.2.17 Cholesterol binding capacity(CBC)
4.2.18 α-Amylase activity inhibition ratio(α-AAIR)
4.2.19 Statistical analysis
4.3 Results and discussion
4.3.1 Single‐factor experiment analysis
4.3.2 DF components
4.3.3 Monosaccharide and uronic acid composition of potato dietary fibre
4.3.4 Scanning electron microscopy(SEM)
4.3.5 FT-IR Spectra
4.3.6 Physicochemical properties of unmodified and modified DFs
4.3.7 Functional properties
4.4 Conclusion
CHAPTER 5 OVERALL CONCLUSION AND RECOMMENDATION
5.1 Conclusion
5.2 Recommendations
Bibliography
Acknowledgement
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Anticancer effects of sweet potato protein on human colorectal cancer cells[J]. Peng-Gao Li,Tai-Hua Mu,Le Deng. World Journal of Gastroenterology. 2013(21)
[2]旋流與酸漿法甘薯淀粉性能及粉條品質(zhì)比較[J]. 鄧福明,木泰華,張苗. 食品工業(yè)科技. 2012(17)
[3]固態(tài)氣爆技術(shù)制備玉米皮水溶性膳食纖維的研究[J]. 王安建,田廣瑞,魏書信,王趙改. 食品科技. 2011(06)
本文編號(hào):3217314
【文章來(lái)源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:103 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
博士學(xué)位論文評(píng)閱人、答辯委員會(huì)簽名表
摘要
abstract
Abbreviations
CHAPTER 1 INTRODUCTION
1.1 General Introduction
1.2 Potato residue:characterization and utilization
1.2.1 Values and environmental risk of potato waste residue
1.2.2 Particle size and grinding effect on potato residue
1.3 Dietary fibre production and utilization from potato wastes residue
1.4 Modified Dietary fibre production and utilization
1.5 Aim and content of research
1.5.1Aim
1.5.2 Research content
1.5.3 Technical road map
CHAPTER 2 EFFECTS OF PARTICLE SIZE ON STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO RESIDUE AND THE QUALITY CHARACTERISTICS OF STARCH NOODLES THEREOF
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials and reagents
2.2.2 Preparation of potato residue with different particle size
2.2.3 Particle size distribution
2.2.4 Proximate composition
2.2.5 Color measurement
2.2.6 Total polyphenol content
2.2.7 Thermal Properties
2.2.8 Fourier-transformed infrared spectroscopy(FT-IR)
2.2.9 Scanning electron microscopy(SEM)
2.2.10 Physicochemical and functional properties
2.2.11 Starch noodles preparation and qualities determination
2.2.12 Statistical analysis
2.3 Results and discussion
2.3.1 Proximate composition of potato residue flours
2.3.2 Particle size distribution
2.3.3 Colour measurement
2.3.4 Phenolic compound
2.3.5 Thermal properties of potato residues
2.3.6 FT-IR spectra
2.3.7 SEM observation
2.3.8 Hydration properties
2.3.9 Functional properties
2.3.10 Textural properties of wet starch noodles
2.3.11 Cooking time
2.3.12 In vitro starch digestibility
2.4 Conclusion
CHAPTER 3 STRUCTURE,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF TOTAL,SOLUBLE,AND INSOLUBLE DIETARY FIBER FROM POTATO RESIDUES
3.1 Introduction
3.2 Material and methods
3.2.1 Materials and reagents:
3.2.2 Dietary fiber preparation and extraction from potato residue
3.2.3 Proximate composition
3.2.4 Chemical constituents
3.2.5 Neutral sugars and uronic acid content of potato dietary fibres
3.2.6 Water retention capacity(WRC)
3.2.7 Water solubility(WS)
3.2.8 Water swelling capacity(WSC)
3.2.9 Oil holding capacity(OHC)
3.2.10 Glucose adsorption capacity(GAC)
3.2.11 Cholesterol binding capacity(CBC)
3.2.12 α-Amylase activity inhibition ratio(α-AAIR)
3.2.13 Fourier-transformed infrared spectroscopy(FT-IR)
3.2.14 Scanning electron microscopy(SEM)
3.2.15 Statistical analysis
3.3 Results and discussion
3.3.1 Characterization of DFs from potato residue
3.3.2 Monosaccharide content of potato dietary fibre
3.3.3 Scanning electron microscopy(SEM)
3.3.4 FT-IR Spectra
3.3.5 Physicochemical properties
3.3.6 Functional properties
3.4 Conclusion
CHAPTER 4 EFFECTS OF HIGH HYDROSTATIC PRESSURE AND CELLULASE MODIFICATION ON THE STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO DIETARY FIBER
4.1 Introduction
4.2 Material and methods
4.2.1 Materials and reagents
4.2.2 Dietary fiber preparation and extraction from potato residue
4.2.3 Single‐factor experiment
4.2.4 High hydrostatic pressure(HHP)modification
4.2.5 Enzymatic hydrolysis
4.2.6 Combined enzyme and HHP treated modified DF
4.2.7 Soluble dietary fiber(SDF)determination
4.2.8 Proximate composition
4.2.9 Neutral sugars and uronic acid content of potato modified dietary fibres
4.2.10 Scanning electron microscopy(SEM)
4.2.11 Fourier-transformed infrared spectroscopy(FT-IR)
4.2.12 Water retention capacity(WRC)
4.2.13 Water solubility(WS)
4.2.14 Water swelling capacity(WSC)
4.2.15 Oil holding capacity(OHC)
4.2.16 Glucose adsorption capacity(GAC)
4.2.17 Cholesterol binding capacity(CBC)
4.2.18 α-Amylase activity inhibition ratio(α-AAIR)
4.2.19 Statistical analysis
4.3 Results and discussion
4.3.1 Single‐factor experiment analysis
4.3.2 DF components
4.3.3 Monosaccharide and uronic acid composition of potato dietary fibre
4.3.4 Scanning electron microscopy(SEM)
4.3.5 FT-IR Spectra
4.3.6 Physicochemical properties of unmodified and modified DFs
4.3.7 Functional properties
4.4 Conclusion
CHAPTER 5 OVERALL CONCLUSION AND RECOMMENDATION
5.1 Conclusion
5.2 Recommendations
Bibliography
Acknowledgement
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Anticancer effects of sweet potato protein on human colorectal cancer cells[J]. Peng-Gao Li,Tai-Hua Mu,Le Deng. World Journal of Gastroenterology. 2013(21)
[2]旋流與酸漿法甘薯淀粉性能及粉條品質(zhì)比較[J]. 鄧福明,木泰華,張苗. 食品工業(yè)科技. 2012(17)
[3]固態(tài)氣爆技術(shù)制備玉米皮水溶性膳食纖維的研究[J]. 王安建,田廣瑞,魏書信,王趙改. 食品科技. 2011(06)
本文編號(hào):3217314
本文鏈接:http://sikaile.net/projectlw/qgylw/3217314.html
最近更新
教材專著