番茄節(jié)間長度的QTL定位
發(fā)布時(shí)間:2022-02-24 20:49
番茄(Solanum Lycopersicum L.)是世界上最重要的蔬菜之一。番茄植株的結(jié)構(gòu)為營養(yǎng)器官和生殖器官的三維組織,對冠層的光截獲和光合作用有著重要的影響,對總產(chǎn)量和收獲指數(shù)起著極其重要的作用。在番茄馴化過程中,育種工作集中在植物結(jié)構(gòu)的改良,如“理想類型育種”通過提高作物對不同環(huán)境的適應(yīng)性來提高種子/果實(shí)產(chǎn)量。株高和節(jié)間長度是影響植物結(jié)構(gòu)的主要因素。值得注意的是,綠色革命的偉大成就之一是培育出了矮株型和莖粗壯的品種。在現(xiàn)代育種中,植物結(jié)構(gòu)改良的目的是為了便于管理和采收,合理分配果實(shí)和其他部分之間的碳和養(yǎng)分,提高肥料和水份的利用效率。自然變異可以描述為自然群體中單核苷酸(SNP)或小核苷酸片段的插入和缺失(InDel)等,這些變異為檢測QTL提供了DNA鑒別平臺(tái),通過GWAS和QTL定位的方法進(jìn)行基因型與表型的關(guān)聯(lián)。因此,了解番茄節(jié)間伸長基因的遺傳基礎(chǔ)不僅有助于闡明番茄馴化和結(jié)構(gòu)的分子機(jī)制,也為番茄分子育種提供了理論基礎(chǔ)。本研究利用野生型番茄(S.pimpinellifolium)、RIL和F2群體結(jié)合GWAS和傳統(tǒng)的QTL定位方法對番茄節(jié)間長度基因進(jìn)行了...
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:93 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Abbreviations
Chapter 1 GENERNAL INTRODUCTION
1.1 TOMATO CROP
1.2 TOMATO ORIGIN, CLASSIFICATION, DOMESTICATION AND DISTRIBUTION
1.3. ARCHITECTURE
1.4. INTERNODES
1.5. ASPECTS OF TRAITS AFFECTED BY INTERNODE
1.6. MARKER SYSTEMS
1.7. QUANTITATIVE TRAIT LOCI
1.8. THE REQUIREMENTS FOR QTL MAPPING
1.9. MARKER AND QUANTITATIVE TRAIT DATA STRUCTURE
1.10. QTL DETECTION AND MAPPING
1.11. BULKED SEGREGANT ANALYSIS FOR QTL MAPPING
1.12. FACTORS AFFECTING RESULTS FROM QTL MAPPING
1.13. MAPPING POPULATIONS
1.13.1. Criteria for Developing Mapping Population in Linkage-Based Analysis
1.13.2. Populations for Linkage-Based QTL Mapping
1.13.2.1. F_2 Population
1.13.2.2 Backcross Population
1.13.2.3 Doubled Haploids
1.13.2.4 Recombinant Inbred Lines
1.13.2.5. Near-Isogenic Lines
1.13.3 Populations to Exploit Linkage Disequilibrium
1.13.3.1 Association Mapping Population
1.13.3.2 Multi-parent Advanced Generation Inter-cros
1.13.3.4 Population to Exploit Both Linkage and Linkage Disequilibrium
1.13.3.5 Mapping Populations for Cross-Pollinating Species
1.14. TOMATO GENOMICS
1.15. GENOME-WIDE ASSOCIATION STUDIES (GWAS)
1.16. LOW-COVERAGE RESEQUENCING
1.17. OBJECTIVES OF THE STUDY
1.17.1. General Objective
1.17.2. Specific Objectives
CHAPTER 2 GENOME-WIDE ASSOCIATION STUDIES OF INTERNODELENGTH IN S. PIMPINELLIFOLIUM
2.1. INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Plant materials
2.2.2 Experimental design and trait measurements
2.2.3 Sequencing
2.2.4 SNP detection
2.2.5 Genome-wide association analysis
2.3 RESULTS
2.3.1 Phenotypic analysis and population characterization
2.3.2 QTL identification by GWAS approach
2.4 DISCUSSION
2.5. CONCLUSIONS
CHAPTER 3 QTL IDENTIFICATION OF INTERNODE LENGTH IN A TOMATORIL POPULATION DERIVED FROM S. PIMPINELLIFOLIUM
3.1. INTRODUCTION
3.2 Materials and methods
3.2.1 Plant materials
3.2.2 Phenotypic Evaluation
3.2.3 Genotyping
3.2.3.1 Preparation of genomic DNA
3.2.3.2 SNP genotyping
3.2.3.3 Bin construction of the Recombinant
3.2.4 Genome-wide association studies
3.2.5 Statistical analysis
3.3 RESULTS
3.3.1 Variation of internode length in RIL population
3.3.2 QTLs identification for internode length
3.3.3 Candidates analysis of internode length
3.4 DISCUSSION
3.5 CONCLUSION
CHAPTER 4 FINE MAPPING OF MAJOR-EFFECT QTL CONTROLLING THEINTERNODE LENGTH IN (S. LYCOPERSICUM) TOMATO
4.1. INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Plant materials
4.2.2 DNA extraction and genomic analysis
4.2.3 Molecular markers and PCR amplification
4.2.4 Linkage mapping and QTL analysis
4.2.5 Statistical analysis
4.3. RESULTS
4.3.1. Phenotypic data analysis
4.3.2 Frequency distributions of internode length in the segregating generations
4.3.3 Inheritance of internode length
4.3.4 Genetic linkage analysis and QTL identification
4.3.5 Refining the map position of the sil locus
4.3.6 Prediction of candidate genes
4.4. DISCUSSIONS
4.4.1 Internode length Inheritance pattern in tomato
4.4.2 A major QTL for internode length in tomato
4.4.3 Candidate gene for Internode length
4.5. CONCLUSIONS
CHAPTER 5 OVERALL CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRCICULUM VITAE
【參考文獻(xiàn)】:
期刊論文
[1]利用永久群體在不同環(huán)境下定位黃瓜株高QTL[J]. 苗晗,顧興芳,張圣平,張忠華,黃三文,王燁. 中國農(nóng)業(yè)科學(xué). 2012(22)
[2]黃瓜遺傳圖譜構(gòu)建及株高相關(guān)性狀的QTL定位[J]. 嵇怡,徐強(qiáng),繆旻珉,梁國華,高海潔,羅晶晶,陳學(xué)好. 園藝學(xué)報(bào). 2009(10)
本文編號:3643484
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:93 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Abbreviations
Chapter 1 GENERNAL INTRODUCTION
1.1 TOMATO CROP
1.2 TOMATO ORIGIN, CLASSIFICATION, DOMESTICATION AND DISTRIBUTION
1.3. ARCHITECTURE
1.4. INTERNODES
1.5. ASPECTS OF TRAITS AFFECTED BY INTERNODE
1.6. MARKER SYSTEMS
1.7. QUANTITATIVE TRAIT LOCI
1.8. THE REQUIREMENTS FOR QTL MAPPING
1.9. MARKER AND QUANTITATIVE TRAIT DATA STRUCTURE
1.10. QTL DETECTION AND MAPPING
1.11. BULKED SEGREGANT ANALYSIS FOR QTL MAPPING
1.12. FACTORS AFFECTING RESULTS FROM QTL MAPPING
1.13. MAPPING POPULATIONS
1.13.1. Criteria for Developing Mapping Population in Linkage-Based Analysis
1.13.2. Populations for Linkage-Based QTL Mapping
1.13.2.1. F_2 Population
1.13.2.2 Backcross Population
1.13.2.3 Doubled Haploids
1.13.2.4 Recombinant Inbred Lines
1.13.2.5. Near-Isogenic Lines
1.13.3 Populations to Exploit Linkage Disequilibrium
1.13.3.1 Association Mapping Population
1.13.3.2 Multi-parent Advanced Generation Inter-cros
1.13.3.4 Population to Exploit Both Linkage and Linkage Disequilibrium
1.13.3.5 Mapping Populations for Cross-Pollinating Species
1.14. TOMATO GENOMICS
1.15. GENOME-WIDE ASSOCIATION STUDIES (GWAS)
1.16. LOW-COVERAGE RESEQUENCING
1.17. OBJECTIVES OF THE STUDY
1.17.1. General Objective
1.17.2. Specific Objectives
CHAPTER 2 GENOME-WIDE ASSOCIATION STUDIES OF INTERNODELENGTH IN S. PIMPINELLIFOLIUM
2.1. INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Plant materials
2.2.2 Experimental design and trait measurements
2.2.3 Sequencing
2.2.4 SNP detection
2.2.5 Genome-wide association analysis
2.3 RESULTS
2.3.1 Phenotypic analysis and population characterization
2.3.2 QTL identification by GWAS approach
2.4 DISCUSSION
2.5. CONCLUSIONS
CHAPTER 3 QTL IDENTIFICATION OF INTERNODE LENGTH IN A TOMATORIL POPULATION DERIVED FROM S. PIMPINELLIFOLIUM
3.1. INTRODUCTION
3.2 Materials and methods
3.2.1 Plant materials
3.2.2 Phenotypic Evaluation
3.2.3 Genotyping
3.2.3.1 Preparation of genomic DNA
3.2.3.2 SNP genotyping
3.2.3.3 Bin construction of the Recombinant
3.2.4 Genome-wide association studies
3.2.5 Statistical analysis
3.3 RESULTS
3.3.1 Variation of internode length in RIL population
3.3.2 QTLs identification for internode length
3.3.3 Candidates analysis of internode length
3.4 DISCUSSION
3.5 CONCLUSION
CHAPTER 4 FINE MAPPING OF MAJOR-EFFECT QTL CONTROLLING THEINTERNODE LENGTH IN (S. LYCOPERSICUM) TOMATO
4.1. INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Plant materials
4.2.2 DNA extraction and genomic analysis
4.2.3 Molecular markers and PCR amplification
4.2.4 Linkage mapping and QTL analysis
4.2.5 Statistical analysis
4.3. RESULTS
4.3.1. Phenotypic data analysis
4.3.2 Frequency distributions of internode length in the segregating generations
4.3.3 Inheritance of internode length
4.3.4 Genetic linkage analysis and QTL identification
4.3.5 Refining the map position of the sil locus
4.3.6 Prediction of candidate genes
4.4. DISCUSSIONS
4.4.1 Internode length Inheritance pattern in tomato
4.4.2 A major QTL for internode length in tomato
4.4.3 Candidate gene for Internode length
4.5. CONCLUSIONS
CHAPTER 5 OVERALL CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRCICULUM VITAE
【參考文獻(xiàn)】:
期刊論文
[1]利用永久群體在不同環(huán)境下定位黃瓜株高QTL[J]. 苗晗,顧興芳,張圣平,張忠華,黃三文,王燁. 中國農(nóng)業(yè)科學(xué). 2012(22)
[2]黃瓜遺傳圖譜構(gòu)建及株高相關(guān)性狀的QTL定位[J]. 嵇怡,徐強(qiáng),繆旻珉,梁國華,高海潔,羅晶晶,陳學(xué)好. 園藝學(xué)報(bào). 2009(10)
本文編號:3643484
本文鏈接:http://sikaile.net/nykjlw/yylw/3643484.html
最近更新
教材專著