天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

蔗糖影響水稻耐熱性的作用機(jī)理研究

發(fā)布時(shí)間:2021-04-05 10:28
  溫室氣體的大量排放,導(dǎo)致全球氣候變暖,極端高溫天氣頻繁發(fā)生,嚴(yán)重影響了水稻等糧食作物的生長(zhǎng)發(fā)育。蔗糖是一種雙糖,是光合作用的主要產(chǎn)物,是植物儲(chǔ)藏、積累和運(yùn)輸糖分的主要形式。近年來發(fā)現(xiàn),蔗糖不僅可作為能量來源和結(jié)構(gòu)物質(zhì)的重要組成元件,且具有信號(hào)調(diào)節(jié)功能,可調(diào)節(jié)相關(guān)基因的表達(dá)和酶活性,進(jìn)而調(diào)節(jié)植物生長(zhǎng)發(fā)育和應(yīng)對(duì)不良環(huán)境。由于水稻熱響應(yīng)機(jī)理的復(fù)雜性,蔗糖對(duì)水稻耐熱性的調(diào)控機(jī)理尚不明確,本文利用耐熱性存在差異的兩個(gè)水稻材料Zhefu802及其淡綠葉近等基因系fgl,分別從苗期和花粉母細(xì)胞減數(shù)分裂期研究蔗糖參與調(diào)控水稻耐熱性的作用機(jī)理。結(jié)果如下:兩個(gè)水稻材料于六葉期進(jìn)行極端高溫處理(45°C 8h),其中高溫處理前分別用水和0.1%的蔗糖進(jìn)行葉面噴施,高溫處理結(jié)束后進(jìn)行取樣并測(cè)定相關(guān)指標(biāo),結(jié)果顯示:與水相比,外源蔗糖可顯著提高高溫后水稻的存活率和Fv/Fm,顯著降低葉片H2O2和MDA含量,顯著提高CAT酶的活性、蔗糖含量、可溶性總糖的含量、淀粉的積累和非結(jié)構(gòu)性碳水化合物的含量,顯著提高了氧化型輔酶I NAD+和還原型輔酶I NA... 

【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市

【文章頁數(shù)】:180 頁

【學(xué)位級(jí)別】:博士

【文章目錄】:
摘要
ABSTRACT
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
    1.1 General Introduction
    1.2 Review of Literature
        1.2.1 Purpose of the Research
        1.2.2 Significance of the Research
        1.2.3 Effect of Heat Stress on Plants Growth and Development
        1.2.4 Role of Sugars in Plants Response to Heat Stress
            1.2.4.1 Plants Response to Sugar Starvation
            1.2.4.2 Plants Response to Excess Sugar Treatment
            1.2.4.3 Sucrose, Energy Source or Signaling Molecule?
            1.2.4.4 Role of Sucrose as Energy Source in Plants Response to Heat Stress
            1.2.4.5 Role of Sucrose as Signaling Molecule in Plants Response to Heat Stress
        1.2.5 Role of Abscisic acid (ABA) in Plants Response to Heat Stress
        1.2.6 Sucrose Interaction with Reactive Oxygen Species in Plants Response to Heat Stress
        1.2.7 Sucrose Interaction with Abscisic acid (ABA) in Plants Response to Heat Stress
        1.2.8 Strategies to Improve Tolerance against Heat Stress
        1.2.9 Research Technical Map
CHAPTER 2 THE EFFECTS OF SUCROSE ON RICE THERMO-TOLERANCE DURINGSEEDLING STAGE
    2.1 Introduction
    2.2 Materials and Methods
        2.2.1 Study Location and Environment
        2.2.2 Plant Materials
        2.2.3 Experimental Set up and Growth Condition
        2.2.4 Heat Stress Initiation
        2.2.5 Data Collections
            2.2.5.1 Determination of Hydrogen peroxide (H2O2) Content and Antioxidant enzymeActivities
            2.2.5.2 Determination of Carbohydrate Content
            2.2.5.3 Determination of Nicotinamide Adenine Dinucleotide (NAD+) and NicotinamideAdenine Dinucleotide, reduced (NADH) Content.
            2.2.5.4 Determination of Chlorophyll fluorescence Parameters (Fv/Fm) andMalondialdehyde (MDA) Content
            2.2.5.5 Determination of Adenosine Triphosphate (ATP) Content
            2.2.5.6 Determination of Poly(ADP-ribose)polymerase (PARP) Activity
        2.2.6 Statistical Analysis
    2.3 Results
        2.3.1 Effect of Sucrose on Rice Leaves Phenotype, Chlorophyll fluorescence (Fv/Fm) andMalondialdehyde (MDA) under Heat Stress
        2.3.2 Effect of Sucrose on Rice Leaves H2O2 Content and Antioxidant Enzyme Activity underHeat Stress
        2.3.3 Effect of Sucrose on Rice Leaves Carbohydrates Content under Heat Stress
        2.3.4 Effect of Sucrose on Rice Leaves NAD+/NADH Content under Heat Stress
        2.3.5 Effect of Sucrose on Rice Leaves ATP Content under Heat Stress
        2.3.6 Effect of Sucrose on Rice Leaves PARP Content under Heat Stress
    2.4 Discussion
    2.5 Conclusion
CHAPTER 3 TRANSCRIPTOME ANALYSIS FOR THE RICE GENOTYPES UNDER HEATSTRESS
    3.1 Introduction
    3.2 Materials and Methods
        3.2.1 Study Location and Environment
        3.2.2 Plant Materials
        3.2.3 Experimental Set up and Growth Condition
        3.2.4 Heat Stress Initiation
        3.2.5 Data Collections
            3.2.5.1 RNA Extraction and Sequencing
            3.2.5.2 Transcript Quantification and Differentially Expressed Genes (DEGs) Analysis
            3.2.5.3 GO and KEGG Functional and Enrichment Analysis.
            3.2.5.4 Validation of RNA-Seq Data by q RT-PCR Analysis
        3.2.6 Statistical Analysis
    3.3 Results
        3.3.1 Quality Control Analysis
        3.3.2 Identification of Differentially Expressed Genes (DEGs) Following Heat Stress
        3.3.3 Volcano Plots for DEGs in Pairwise Comparison between Zhefu802 and fgl
        3.3.4 Principal Component Analysis of DEGs in Pairwise Comparison between Zhefu802 andfgl
        3.3.5 Pairwise-Pearson Correlation Heatmap of the Comparative Transcriptome Analysis ofZhefu802 and fgl
            3.3.5.1 Within the Genotypes
            3.3.5.2 Between the Genotypes
vsControl between the Two Genotypes">            3.3.5.3 StressvsControl between the Two Genotypes
        3.3.6 Heatmap Hierarchical Cluster Analysis of DEGs in Pairwise Comparison BetweenZhefu802 and fgl
        3.3.7 Gene Ontology Functional Enrichment Classification of DEGs in Pairwise Comparisonbetween Zhefu802 and fgl
        3.3.8 Statistics of Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment of DEGs inPairwise Comparison between Zhefu802 and fgl
        3.3.9 Quantitative Real-Time PCR (q RT-PCR) Validation of DEGs
    3.4 Discussion
    3.5 Conclusion
CHAPTER 4 TRANSCRIPTOME ANALYSIS FOR THE EFFECTS OF SUCROSE UNDER HEATSTRESS
    4.1 Introduction
    4.2 Materials and Methods
        4.2.1 Study Location and Environment
        4.2.2 Plant Materials
        4.2.3 Experimental Set up and Growth Condition
        4.2.4 Heat Stress Initiation
        4.2.5 Data Collections
            4.2.5.1 RNA Extraction and Sequencing
            4.2.5.2 Transcript Quantification and Differentially Expressed Genes (DEGs) Analysis
            4.2.5.3 GO and KEGG Functional and Enrichment Analysis
        4.2.6 Statistical Analysis
    4.3 Results
        4.3.1 Quality Control Analysis
        4.3.2 Identification of Differentially Expressed Genes (DEGs) Following Heat Stress
        4.3.3 Volcano Plots for DEGs in Pairwise Comparison between Zhefu802 and fgl
        4.3.4 Principal Component Analysis of DEGs in Pairwise Comparison between Zhefu802 andfgl
        4.3.5 Pairwise-Pearson Correlation Heatmap of the Comparative Transcriptome Analysis ofZhefu802 and fgl
            4.3.5.1 Within the Genotypes
            4.3.5.2 Between the Genotypes
vsControl between the Two Genotypes">            4.3.5.3 StressvsControl between the Two Genotypes
        4.3.6 Heatmap Hierarchical Cluster Analysis of DEGs in Pairwise Comparison BetweenZhefu802 and fgl
        4.3.7 Gene Ontology Functional Enrichment Classification of DEGs in Pairwise Comparisonbetween Zhefu802 and fgl
        4.3.8 Statistics of Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment of DEGs inPairwise Comparison between Zhefu802 and fgl
    4.4 Discussion
    4.5 Conclusion
CHAPTER 5 THE EFFECTS OF SUCROSE INTERACT WITH ABA ON RICE THERMO-TOLER- ANCE DURING PMC STAGE
    5.1 Introduction
    5.2 Materials and Methods
        5.2.1 Study Location and Environment
        5.2.2 Plant Materials
        5.2.3 Experimental Set up and Growth Condition
        5.2.4 Heat Stress Initiation
        5.2.5 Data Collections
            5.2.5.1 Determination of Pollen Viability
            5.2.5.2 Determination of Seed-Setting Rate
            5.2.5.3 Determination of Non-Structural Carbohydrate (NSC) Content
            5.2.5.4 Determination of Sucrose Content
            5.2.5.5 Determination of Abscisic Acid (ABA) Content
            5.2.5.6 Determination of ATP/ADP Content
            5.2.5.7 Determination of NAD+ and NADH Content
            5.2.5.8 Determination of PARP Content (Chapter 2)
        5.2.6 Statistical Analysis
    5.3 Results
        5.3.1 Sucrose ABA-Interaction Effect on Pollen viability of Rice Genotypes under HeatStress
        5.3.2 Sucrose ABA-Interaction Effect on Seed-Setting of Rice Genotype under HeatStress
        5.3.3 Sucrose ABA-Interaction Effect on NSC Content in Rice Genotype under HeatStress
        5.3.4 Sucrose ABA-Interaction Effect on Sucrose Content in Rice Genotype under HeatStress
        5.3.5 Sucrose ABA-Interaction Effect on ABA Content in Rice Genotype under HeatStress
        5.3.6 Sucrose ABA-Interaction Effect on ATP/ADP Content in Rice Genotype under HeatStress
        5.3.7 Sucrose ABA-Interaction Effect on NAD+/NADH Content in Rice Genotype under HeatStress
        5.3.8 Sucrose ABA-Interaction Effect on PARP Content CHAP in Rice Genotype under HeatStress
    5.4 Discussion
    5.5 Conclusion
CHAPTER 6 MAJOR FINDINGS AND FUTURE PROSPECTS
    6.1 Major fndings
    6.2 Future pospects
REFERENCES
APPENDIXES
LIST OF PUBLICATIONS DURING PHD STUDY
ACKNOWLEDGEMENTS
AUTHOR RESUME


【參考文獻(xiàn)】:
期刊論文
[1]Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants[J]. Shabir H.Wani,Vinay Kumar,Varsha Shriram,Saroj Kumar Sah.  The Crop Journal. 2016(03)
[2]Microsatellite-Aided Screening for Fertility Restoration Genes(Rf)Facilitates Hybrid Improvement[J]. RAAFAT El-Namaky,SABER Sedeek,YONNELLE Dea Moukoumbi,RODOMIRO Ortiz,BABOUCARR Manneh.  Rice Science. 2016(03)
[3]New Temperature Sensitive Genic Male Sterile Lines with Better Outcrossing Ability for Production of Two-Line Hybrid Rice[J]. S.J.ARASAKESARY,S.MANONMANI,R.PUSHPAM,S.ROBIN.  Rice Science. 2015(01)
[4]水稻灌漿期耐熱害的數(shù)量性狀基因位點(diǎn)分析[J]. 朱昌蘭,肖應(yīng)輝,王春明,江玲,翟虎渠,萬建民.  中國水稻科學(xué). 2005(02)
[5]秈稻標(biāo)記性狀等基因系的構(gòu)建(英文)[J]. 曾大力,錢前,董國軍,朱旭東,董鳳高,滕勝,郭龍標(biāo),曹立勇,程式華,熊振民.  Acta Botanica Sinica. 2003(09)
[6]水稻籽粒灌漿期間莖鞘貯存物質(zhì)含量變化及其影響因素研究[J]. 梁建生,曹顯祖,張海燕,宋平,朱慶森.  中國水稻科學(xué). 1994(03)



本文編號(hào):3119464

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/nykjlw/nzwlw/3119464.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd234***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com