南太平洋長鰭金槍魚漁業(yè)資源時空分布及資源狀況分析
[Abstract]:Tuna species in the pelagic fishery industry are favored by fishery enterprises because of their high economic benefits. Tuna species include tuna, yellowfin tuna, bigeye tuna and long fin tuna. In terms of catches and economic benefits, long fin tuna also accounts for an important part of the total catch in longline fishing. In recent years, due to the serious decline of macro-eye tuna resources and yellowfin tuna resources, some fishing countries and regions have begun to turn to the development of long-fin tuna fishery. Long-fin tuna is also an important target fish in the South Pacific longline fishery in China. The related research on long-fin tuna has gradually increased in recent years. Its habitat depth varies in different waters and has a significant relationship with environmental factors. This study provides a basis for the formulation of conservation and management strategies for albacore tuna, as well as a guide for albacore tuna fisheries to reduce concurrent catch and promote sustainable fisheries development. The fishery data and marine environment data collected from the Ministry of Fisheries were analyzed. The factors affecting the changes of biological individual composition and fishery catch per unit effort (CPUE), the relationship between habitat depth and environmental factors, and the spatial and temporal distribution characteristics of habitat depth were analyzed. The contents and results of the study were as follows: The biological composition of albacore tuna and the influencing factors of its fishery CPUE were studied by analyzing biological samples and marine environmental data. The results showed that the relationship between fork length (FL, cm) and body mass (WW, kg) was WW = 3 *10-5 *FL2. 9099 (male and female, R2 = 0.9153); the relationship between body length (TL, cm) and fork length (FL, cm) is: TL = 1.0336 FL + 2.555 (R2 = 0.9614); the relationship between fork length (FL, cm) and the distance between two dorsal fins (LD1D2, cm) is: LD1D2 = 0.2485 FL + 1.2381 (R2 = 0.8151); the generalized additive model (GAM) analysis time, spatial factors and environmental factors affecting the production of CPU. The results showed that longitude had the most significant effect on CPE, and the explanatory rate of variance was 3.25%; latitude, salinity and temperature at 150 m water layer, time (season), and temperature at 200 m water layer also had obvious effect on CPE, which could explain 3.06%, 1.71%, 1.51%, 1.43%, 1.41% variation respectively. Second, the basis of the relationship between the aquatic layer of Longfin tuna and the environmental factors of sea water. The data of Longfin tuna catch and sea water temperature and salinity recorded by observers were analyzed. CPUE was used as the main basis for estimating the range of habitat water layer and the suitable environmental factors of habitat water layer. The salinity ranges from 35.0 to 35.6, and the highest is in the water layer of 190-230 M. The corresponding temperature is 18-20 C and the salinity is 35.2-35.4. The results of this study can provide theoretical support for further study and conservation management of the vertical habitat distribution of albacore tuna in the South Pacific Ocean. Spatial and temporal distribution of habitat depth of Longfin tuna was studied based on the data recorded by fishery observers. The spatial and temporal distribution of habitat depth of Longfin tuna was analyzed according to the catenary formula. The fishing depth range and the optimum habitat layer of longline tuna in tropical and temperate waters were estimated, and the spatial distribution and temporal variation of the optimum habitat depth of longline tuna in the two waters were compared. The optimum habitat depth of Longfin tuna in tropical waters ranged from 190 m to 220 m, while that in temperate waters ranged from 160 m to 190 M. The mean habitat depth of Longfin tuna varied significantly in different seasons (P In practical operation, the variation of vertical habitat depth should be fully considered, the longline fishing gear should be rationally allocated, the concurrent catch rate and the mistake catch rate should be reduced, and the ecosystem balance should be maintained.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S932
【相似文獻】
相關(guān)期刊論文 前10條
1 葉民權(quán);;我國環(huán)境因子與地震關(guān)系研究綜述[J];國際地震動態(tài);1992年09期
2 董罡;周康力;劉煒明;;屏障設(shè)施環(huán)境因子的控制設(shè)計及探討[J];實驗動物科學(xué);2008年02期
3 N.AllenBinns;FredM·Eiserman;周漢書;;美國懷俄明河流中鮭、鱒魚環(huán)境因子的定量分析[J];國外水產(chǎn);1982年01期
4 施建忠,王天鐸;營養(yǎng)生長期植物冠根比及其對環(huán)境因子的響應(yīng)[J];植物生理學(xué)報;1995年04期
5 張金屯;結(jié)合多個環(huán)境因子的模糊數(shù)學(xué)排序[J];植物學(xué)通報;1995年S2期
6 李繼泉,金幼菊;環(huán)境因子對植物他感化合物的影響[J];河北林果研究;1999年03期
7 梁利群,孫效文,曹頂臣,閆學(xué)春;轉(zhuǎn)基因鯉對幾種環(huán)境因子耐受能力的研究[J];應(yīng)用生態(tài)學(xué)報;2002年12期
8 孫利芹,郭盡力,江濤,王長海;環(huán)境因子對紫球藻細胞脂肪酸組成的影響[J];中國油脂;2004年09期
9 慈恩,高明;環(huán)境因子對豆科共生固氮影響的研究進展[J];西北植物學(xué)報;2005年06期
10 孫傳范;趙耕毛;唐運來;;環(huán)境因子對微藻油脂積累的影響[J];安徽農(nóng)業(yè)科學(xué);2011年19期
相關(guān)會議論文 前10條
1 孫菊燕;黃鶴忠;;環(huán)境因子對海洋藻類酶活性的影響及其應(yīng)用[A];中國海洋學(xué)會海洋生物工程專業(yè)委員會2005年學(xué)術(shù)年會論文集[C];2005年
2 馬增嶺;高坤山;;環(huán)境因子對鈍頂螺旋藻生物學(xué)特性的影響[A];中國海洋湖沼學(xué)會藻類學(xué)分會第七屆會員大會暨第十四次學(xué)術(shù)討論會論文摘要集[C];2007年
3 馬晴雯;張東升;林國芳;陳紀(jì)剛;項翠琴;沈建華;;上海人群中環(huán)境化合物代謝有關(guān)基因多態(tài)性研究[A];中國毒理學(xué)會第三屆全國學(xué)術(shù)會議論文(摘要)集[C];2001年
4 崔泳琳;周忠玉;尹嶺;吳效明;王式功;藤懷金;王敏珍;鄭山;黎檀實;;北京地區(qū)氣象與環(huán)境因子對循環(huán)系統(tǒng)急診發(fā)病量影響研究[A];S7 氣候環(huán)境變化與人體健康[C];2012年
5 程紅偉;陶俊勇;張云安;;指數(shù)分布環(huán)境因子算法探討[A];2010年全國機械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會暨第四屆可靠性工程分會第二次全體委員大會論文集[C];2010年
6 郭房慶;Nigel Crawford;;一氧化氮調(diào)控植物葉片衰老的機理[A];2006年中國植物逆境生理生態(tài)與分子生物學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2006年
7 閻光宇;馮建祥;楊盛昌;林光輝;;秋茄冬季樹干莖流特征及其與環(huán)境因子的關(guān)系初探[A];中國第五屆紅樹林學(xué)術(shù)會議論文摘要集[C];2011年
8 胡斌;楊戰(zhàn)平;;基于反應(yīng)論模型的指數(shù)型環(huán)境因子點估計[A];中國工程物理研究院科技年報(2003)[C];2003年
9 盧從明;;光系統(tǒng)Ⅱ?qū)Νh(huán)境因子交互作用的響應(yīng)[A];全國植物光合作用、光生物學(xué)及其相關(guān)的分子生物學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2001年
10 張敬旺;謝駿;龔?fù)麑?李志斐;余德光;;池塘底泥耗氧與環(huán)境因子的關(guān)系[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2011年
相關(guān)重要報紙文章 前1條
1 河南科技學(xué)院 魏剛才 劉保國;保證雞群健康和高產(chǎn)必須注重改善環(huán)境,,減少應(yīng)激發(fā)生[N];中國畜牧獸醫(yī)報;2005年
相關(guān)博士學(xué)位論文 前4條
1 TOURE Dado;中國西南地區(qū)龍虎山自然保護區(qū)喀斯特森林群落物種組成及與土壤、地質(zhì)和其他環(huán)境因子的相關(guān)關(guān)系[D];中國地質(zhì)大學(xué);2015年
2 穆大剛;五種紅樹植物光合產(chǎn)量模型及對環(huán)境因子的響應(yīng)[D];中國科學(xué)院研究生院(海洋研究所);2009年
3 曹加杰;非生物環(huán)境因子調(diào)控對沉水植物生態(tài)恢復(fù)的影響研究[D];南京林業(yè)大學(xué);2014年
4 李強;環(huán)境因子對沉水植物生長發(fā)育的影響機制[D];南京師范大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 尹浩;西北太平洋熱帶氣旋快速加強的環(huán)境因子研究[D];南京信息工程大學(xué);2015年
2 古麗孜帕·夏熱浦汗;不同來源產(chǎn)單核細胞李斯特菌株對不同環(huán)境因子的抗性研究[D];石河子大學(xué);2015年
3 賈小佳;WTH-4溫濕度環(huán)境因子無線監(jiān)測儀的設(shè)計[D];寧夏大學(xué);2015年
4 魏雨晴;上海市霾與非霾期間長江口環(huán)境因子特征分析[D];上海海洋大學(xué);2015年
5 簡美鋒;鄱陽湖濕地沉水植物的分布特征及其環(huán)境影響因子研究[D];江西師范大學(xué);2015年
6 王春生;多功能作物生長及環(huán)境因子監(jiān)測系統(tǒng)的設(shè)計與研制[D];安徽農(nóng)業(yè)大學(xué);2014年
7 吳U嗕
本文編號:2192908
本文鏈接:http://sikaile.net/kejilunwen/zylw/2192908.html