并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)模型優(yōu)化解析方法研究
發(fā)布時(shí)間:2021-12-19 14:05
本文的主要目的是建立一個(gè)新的算法,以簡(jiǎn)化所有類型的并聯(lián)機(jī)器人的運(yùn)動(dòng)學(xué)問(wèn)題的解決,而不限制自由度的數(shù)量。該算法適用于各種并聯(lián)機(jī)器人結(jié)構(gòu),具有精度高、可靠性好、執(zhí)行時(shí)間短、比現(xiàn)有方法更易于使用的特點(diǎn)。五連桿并聯(lián)機(jī)器人的數(shù)值模擬和實(shí)驗(yàn)結(jié)果表明,該方法可用于解決各種并聯(lián)機(jī)器人的運(yùn)動(dòng)學(xué)問(wèn)題,對(duì)于結(jié)構(gòu)復(fù)雜和自由度多的并聯(lián)機(jī)器人,該方法也具有計(jì)算時(shí)間短、精度高、可靠性高、結(jié)果收斂快等優(yōu)點(diǎn)。此外,本文還擴(kuò)展了該方法在機(jī)器人公差設(shè)計(jì)領(lǐng)域的應(yīng)用。通過(guò)兩個(gè)仿真實(shí)驗(yàn)驗(yàn)證了該方法的可行性;計(jì)算和仿真結(jié)果也說(shuō)明了所提出的公差分配方法的準(zhǔn)確性和效率。首先,在研究手臂機(jī)器人優(yōu)化問(wèn)題的基礎(chǔ)上,本論文提供了新的接入方法以尋找運(yùn)動(dòng)學(xué)參數(shù),即將傳統(tǒng)并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)問(wèn)題轉(zhuǎn)換成有約束的非線性最優(yōu)化問(wèn)題,其目標(biāo)函數(shù)是Rosenbrock-Banana函數(shù)。經(jīng)過(guò)很多試驗(yàn),在非線性優(yōu)化問(wèn)題中Rosenbrock-Banana函數(shù)最合適是廣義簡(jiǎn)約算法。從運(yùn)動(dòng)學(xué)控制試驗(yàn)中直接尋找,將縮短編程開發(fā)時(shí)間。其次,本文提出一種新的方式分類并聯(lián)機(jī)器人,非棱柱并聯(lián)機(jī)器人與棱柱并聯(lián)機(jī)器人,包括3種:非棱柱并聯(lián)機(jī)器人(類型1),棱柱并聯(lián)機(jī)器人分成兩種:主...
【文章來(lái)源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:248 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Methods for information initialization of robot
1.2 Robot kinematics, models and methods
1.2.1 Robot kinematics
1.2.2 Modelling phase
1.2.3 Model survey phase
1.2.4 An overview of methods for solving kinematic problems of parallel robot
1.3 Research orientation
1.4 Subjects and research methods
1.5 Contents of the present thesis
Chapter 2 Mathematical Bases for Changing from the Robot Kinematic Problem to theOptimization Problem
2.1 Introduction
2.2 Robot kinematic under the optimization form
2.2.1 The optimal mathematical model of robotic kinematic
2.2.2 Bases for optimization problems on the robot arm
2.2.3 The optimal movement problem
2.2.4 Algorithm diagram
2.2.5 The uniform precision structure
2.2.6 The effect of the difference calculation on the accuracy of the problem
2.3 Types of associated vector equations for parallel robots
2.3.1 Difference in the way to build the associated vector equations for robot arms andparallel robots
2.3.2 The non-prismatic parallel robot (Type 1)
2.3.3 The prismatic parallel robots
2.3.4 Identify similarities in the mathematical model of parallel robots and robot arms
2.4 Chapter conclusion
Chapter 3 Application of Generalized Reduced Gradient Algorithm to Solve theKinematic Problem of Parallel Robots
3.1 Introduction
3.2 Generalized Reduced Gradient algorithm
3.3 Introduction of optimization application of solver in Microsoft-Excel
3.4 Resolution of the Kinematic Problems of Parallel Robots using Generalized ReducedGradient algorithm
3.4.1 Parallel robot of type 1
3.4.2 Equivalent substitution configuration and the formulation of variables change
3.4.3 Parallel robot of type 2
3.4.4 Parallel robot of type 3
3.4.5 The assurance of unique solution between two different spaces
3.4.6 Testing the reliability of the novel method
3.4.7 Testing the precision of the novel method and compare accuracy with other methods
3.5 Chapter’s conclusion
Chapter 4 Simulation and Experimental Study
4.1 Introduction
4.2 Content of experiment
4.3 Based on experimental design
4.3.1 Parallel Scara robot
4.3.2 Settings of kinematic characteristics of joints for Parallel Scara robot
4.4 Testing simulation and accuracy of numerical results
4.4.1 Inspection of results by graphics
4.4.2 Inspection of results by simulation software
4.5 Experimental study
4.5.1 Experimental setup
4.5.2 Basic parameters of mechanical-electrical-electronic components
4.5.3 Design of control system software
4.5.4 Results of experiments and discussion
4.6 Chapter conclusions
Chapter 5 Application Generalized Reduced Gradient Algorithm to DetermineTolerance Design of Robot Parameters
5.1 Introduction
5.2 Literature review of tolerance design
5.3 The formation of the optimal problem
5.4 Solution method for the optimization problem
5.5 Determination of the tolerance of joint angle movement
5.6 Determination of the deviation of link dimensions and joint free radial movement byusing inverse kinematic
5.7 The example of numerical simulation
5.7.1 Robot arm
5.7.2 Parallel Robot
5.8 Checking the accuracy of the proposed method
5.9 Chapter conclusion
Chapter 6 Conclusions and Future Works
6.1 Conclusions
6.2 The main points of innovation
6.3 Future works
References
AppendixⅠ
Achievement of research
Acknowledgements
附件
【參考文獻(xiàn)】:
期刊論文
[1]基于改進(jìn)粒子群算法的并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)精度提高新方法[J]. 杜義浩,謝平,田培濤,劉彬. 中國(guó)機(jī)械工程. 2012(16)
[2]6-PRRS并聯(lián)機(jī)器人正運(yùn)動(dòng)學(xué)求解[J]. 楊永剛,趙杰,劉玉斌,朱延河. 吉林大學(xué)學(xué)報(bào)(工學(xué)版). 2008(03)
[3]混沌映射牛頓迭代法與平面并聯(lián)機(jī)構(gòu)正解研究[J]. 羅佑新,李曉峰,羅烈雷,廖德崗. 機(jī)械設(shè)計(jì)與研究. 2007(02)
[4]同倫算法在并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)中的應(yīng)用[J]. 董濱,張祥德. 應(yīng)用數(shù)學(xué)和力學(xué). 2001(12)
本文編號(hào):3544548
【文章來(lái)源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:248 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Methods for information initialization of robot
1.2 Robot kinematics, models and methods
1.2.1 Robot kinematics
1.2.2 Modelling phase
1.2.3 Model survey phase
1.2.4 An overview of methods for solving kinematic problems of parallel robot
1.3 Research orientation
1.4 Subjects and research methods
1.5 Contents of the present thesis
Chapter 2 Mathematical Bases for Changing from the Robot Kinematic Problem to theOptimization Problem
2.1 Introduction
2.2 Robot kinematic under the optimization form
2.2.1 The optimal mathematical model of robotic kinematic
2.2.2 Bases for optimization problems on the robot arm
2.2.3 The optimal movement problem
2.2.4 Algorithm diagram
2.2.5 The uniform precision structure
2.2.6 The effect of the difference calculation on the accuracy of the problem
2.3 Types of associated vector equations for parallel robots
2.3.1 Difference in the way to build the associated vector equations for robot arms andparallel robots
2.3.2 The non-prismatic parallel robot (Type 1)
2.3.3 The prismatic parallel robots
2.3.4 Identify similarities in the mathematical model of parallel robots and robot arms
2.4 Chapter conclusion
Chapter 3 Application of Generalized Reduced Gradient Algorithm to Solve theKinematic Problem of Parallel Robots
3.1 Introduction
3.2 Generalized Reduced Gradient algorithm
3.3 Introduction of optimization application of solver in Microsoft-Excel
3.4 Resolution of the Kinematic Problems of Parallel Robots using Generalized ReducedGradient algorithm
3.4.1 Parallel robot of type 1
3.4.2 Equivalent substitution configuration and the formulation of variables change
3.4.3 Parallel robot of type 2
3.4.4 Parallel robot of type 3
3.4.5 The assurance of unique solution between two different spaces
3.4.6 Testing the reliability of the novel method
3.4.7 Testing the precision of the novel method and compare accuracy with other methods
3.5 Chapter’s conclusion
Chapter 4 Simulation and Experimental Study
4.1 Introduction
4.2 Content of experiment
4.3 Based on experimental design
4.3.1 Parallel Scara robot
4.3.2 Settings of kinematic characteristics of joints for Parallel Scara robot
4.4 Testing simulation and accuracy of numerical results
4.4.1 Inspection of results by graphics
4.4.2 Inspection of results by simulation software
4.5 Experimental study
4.5.1 Experimental setup
4.5.2 Basic parameters of mechanical-electrical-electronic components
4.5.3 Design of control system software
4.5.4 Results of experiments and discussion
4.6 Chapter conclusions
Chapter 5 Application Generalized Reduced Gradient Algorithm to DetermineTolerance Design of Robot Parameters
5.1 Introduction
5.2 Literature review of tolerance design
5.3 The formation of the optimal problem
5.4 Solution method for the optimization problem
5.5 Determination of the tolerance of joint angle movement
5.6 Determination of the deviation of link dimensions and joint free radial movement byusing inverse kinematic
5.7 The example of numerical simulation
5.7.1 Robot arm
5.7.2 Parallel Robot
5.8 Checking the accuracy of the proposed method
5.9 Chapter conclusion
Chapter 6 Conclusions and Future Works
6.1 Conclusions
6.2 The main points of innovation
6.3 Future works
References
AppendixⅠ
Achievement of research
Acknowledgements
附件
【參考文獻(xiàn)】:
期刊論文
[1]基于改進(jìn)粒子群算法的并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)精度提高新方法[J]. 杜義浩,謝平,田培濤,劉彬. 中國(guó)機(jī)械工程. 2012(16)
[2]6-PRRS并聯(lián)機(jī)器人正運(yùn)動(dòng)學(xué)求解[J]. 楊永剛,趙杰,劉玉斌,朱延河. 吉林大學(xué)學(xué)報(bào)(工學(xué)版). 2008(03)
[3]混沌映射牛頓迭代法與平面并聯(lián)機(jī)構(gòu)正解研究[J]. 羅佑新,李曉峰,羅烈雷,廖德崗. 機(jī)械設(shè)計(jì)與研究. 2007(02)
[4]同倫算法在并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)中的應(yīng)用[J]. 董濱,張祥德. 應(yīng)用數(shù)學(xué)和力學(xué). 2001(12)
本文編號(hào):3544548
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/3544548.html
最近更新
教材專著