基于WebGIS棉花蟲害監(jiān)測系統(tǒng)平臺研發(fā)
[Abstract]:Cotton is the main crop in Xinjiang and Bingtuan. It is necessary to provide cotton pest monitoring information service in time and effectively. The traditional manual management fee is time-consuming and difficult to count, and the remote sensing monitoring is affected by the transit time and needs the ground verification support. Mobile GIS technology can provide an effective solution for pest management, such as fast data acquisition, real-time transmission, unified storage, spatial analysis and service release. On the basis of using intelligent mobile terminal to realize the fast acquisition of pest space and attribute information in cotton field, this paper mainly discusses the unified encapsulation and storage of pest information, the method of GIS spatial analysis and service release, the design and construction method of system platform. In order to solve the dynamic configuration, assembly, aggregation, optimization and push key theoretical and technical problems of cotton field pest information active service. By setting up a unified information service platform, we can push the early warning and prevention information to farmers and grass-roots agricultural technicians in time. The main research results obtained are as follows: (1) collecting and collating the historical pest data, meteorological data, pest potential data and remote sensing images, basic geography, land use of the study area for the past 12 years. Basic farmland and 22 units of farmers and plant protection personnel and other data. Following the classification standard of cotton pest classification and using mobile GIS,GPS, off-line map loading and drawing techniques, the fast collection of pest location and attribute information is realized based on mobile terminal. It is stored in spatiotemporal database through JSON mode. Set up the standard of collecting and entering the data of group-level insects, and realize the unified storage and management of spatial data and attribute data. (2) in view of the spatial data of insects, the inverse distance interpolation method is used to obtain the raster map of pest occurrence grade. Then the raster data is clipped, reclassified, vectorized and spatial linked, and the pest occurrence grade of each field block is obtained. On this basis, the hot spot region of cotton pest occurrence is obtained through hot spot analysis. The cross analysis method is used to obtain the area where cotton pests occur seriously, the spatial analysis algorithm and service model are studied, and the corresponding insect information services are designed and published. (3) under the My Eclipse 10 development environment, based on ArcGIS Server services, the spatial analysis algorithm and service model are studied. ArcGIS JavaScript API and other key technologies, using Web AppBuilder framework to build cotton pest information monitoring service platform, integrate GIS spatial analysis, spatial query, statistical analysis, design the production and expression of pest information service products, establish pest collection. Process, analyze and release the whole process. The system platform acquires and shares cotton pest information in time so that agricultural technicians can take preventive measures and use mobile terminal to realize the real-time collection of insect pest information, which can be completed in 5 seconds from acquisition to storage. Based on the spatial analysis of GIS, the cotton pest monitoring and forecasting model is established. On the one hand, the thematic map is published as a service, which is convenient for users to browse through browser or App on the PC side. On the other hand, the pest information thematic map is cross-analyzed with the cotton plot map which contains the information of farmers, and the areas with serious damage are screened out and pushed accurately to the users through the JPush platform.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP274;S435.62
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周文杰;趙慶展;靳光才;尹小君;戴建國;;基于溫濕系數(shù)的棉蚜發(fā)生等級預(yù)報模型[J];植物保護(hù)學(xué)報;2016年06期
2 時雷;張家耀;錢誠;郭偉;馬新明;趙曉莉;;基于Web的農(nóng)作物信息管理系統(tǒng)構(gòu)建與應(yīng)用[J];河南農(nóng)業(yè)科學(xué);2015年03期
3 趙慶展;靳光才;周文杰;汪傳建;戴建國;;基于移動GIS的棉田病蟲害信息采集系統(tǒng)[J];農(nóng)業(yè)工程學(xué)報;2015年04期
4 房雪;GE Saiying;張永生;曹婧;歐陽芳;;1991—2010年中國棉花病蟲害經(jīng)濟(jì)損失分析[J];應(yīng)用昆蟲學(xué)報;2014年04期
5 張春霞;;新疆棉花蟲害綜合防治發(fā)展進(jìn)程及技術(shù)[J];中國農(nóng)業(yè)信息;2014年05期
6 談樹成;金艷珠;馮龍;虎雄崗;楊煬;李益敏;;基于RIA的WebGIS斜坡地質(zhì)災(zāi)害氣象預(yù)報預(yù)警信息系統(tǒng)的設(shè)計與實現(xiàn)——以怒江為例[J];地球?qū)W報;2014年01期
7 J.D.WERTS;E.A.MIKHAILOVA;C.J.POST;J.L.SHARP;;Sediment Pollution Assessment of Abandoned Residential Developments Using Remote Sensing and GIS[J];Pedosphere;2013年01期
8 王艷春;王承明;田明英;遲勝起;;煙臺市蘋果病蟲害監(jiān)測預(yù)警系統(tǒng)的研發(fā)與應(yīng)用[J];河南農(nóng)業(yè)科學(xué);2012年12期
9 張競成;袁琳;王紀(jì)華;羅菊花;杜世州;黃文江;;作物病蟲害遙感監(jiān)測研究進(jìn)展[J];農(nóng)業(yè)工程學(xué)報;2012年20期
10 趙冰梅;李賢超;王俊剛;;2011年新疆兵團(tuán)棉花病蟲害發(fā)生特點及原因分析[J];中國棉花;2012年03期
相關(guān)博士學(xué)位論文 前2條
1 鄒金秋;農(nóng)情監(jiān)測數(shù)據(jù)獲取及管理技術(shù)研究[D];中國農(nóng)業(yè)科學(xué)院;2012年
2 呂昭智;棉鈴蟲網(wǎng)絡(luò)監(jiān)測預(yù)警信息系統(tǒng)關(guān)鍵技術(shù)的研究[D];中國農(nóng)業(yè)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 宋浩;基于RIA/JavaScript技術(shù)的高速公路滑坡監(jiān)測預(yù)報管理信息系統(tǒng)的設(shè)計與實現(xiàn)[D];長安大學(xué);2015年
2 張健;基于WebGIS的農(nóng)業(yè)地理數(shù)據(jù)可視化技術(shù)研究及應(yīng)用[D];浙江大學(xué);2015年
3 劉愛霞;基于WebGIS的基本農(nóng)田信息服務(wù)平臺的設(shè)計與實現(xiàn)[D];長安大學(xué);2015年
4 周楷淳;基于RIA的變形監(jiān)測WebGIS系統(tǒng)研究與應(yīng)用[D];中南大學(xué);2013年
5 李偉為;基于WEBGIS的玉米精準(zhǔn)施肥系統(tǒng)的設(shè)計與實現(xiàn)[D];吉林農(nóng)業(yè)大學(xué);2011年
6 劉方軍;基于MVC三層架構(gòu)模式的研究與應(yīng)用[D];廣東工業(yè)大學(xué);2011年
7 羅藝;基于WebGIS的作物生產(chǎn)管理信息系統(tǒng)建設(shè)[D];山東農(nóng)業(yè)大學(xué);2010年
8 何江勇;基于WebGIS的新疆石河子地區(qū)棉花平衡施肥專家決策系統(tǒng)的開發(fā)[D];西北農(nóng)林科技大學(xué);2008年
9 張旭;基于Web GIS的棉鈴蟲預(yù)警與決策支持系統(tǒng)[D];石河子大學(xué);2008年
10 陳鵬程;地面高光譜遙感在棉葉螨監(jiān)測中的應(yīng)用研究[D];石河子大學(xué);2006年
,本文編號:2422233
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2422233.html